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ABSTRACT

Ranked search results have become the main mechanism by which
we find content, products, places, and people online. Thus their
ordering contributes not only to the satisfaction of the searcher, but
also to career and business opportunities, educational placement,
and even social success of those being ranked. Researchers have be-
come increasingly concerned with systematic biases in data-driven
ranking models, and various post-processing methods have been
proposed to mitigate discrimination and inequality of opportunity.
This approach, however, has the disadvantage that it still allows an
unfair ranking model to be trained.

In this paper we explore a new in-processing approach: DELTR,
a learning-to-rank framework that addresses potential issues of
discrimination and unequal opportunity in rankings at training time.
We measure these problems in terms of discrepancies in the average
group exposure and design a ranker that optimizes search results
in terms of relevance and in terms of reducing such discrepancies.
We perform an extensive experimental study showing that being
“colorblind” can be among the best or the worst choices from the
perspective of relevance and exposure, depending on how much
and which kind of bias is present in the training set. We show that
our in-processing method performs better in terms of relevance
and exposure than a pre-processing and a post-processing method
across all tested scenarios.
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1 INTRODUCTION

Ranked search results have become the main mechanism by which
we find content, products, places, and people online. These rankings
are typically constructed to provide maximum utility to searchers,
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by ordering items by decreasing probability of being relevant [18].
However, when the items to be ranked represent people, businesses,
or places, ranking algorithms have consequences that go beyond im-
mediate utility for searchers. Researchers have become increasingly
concerned with various systematic biases [10] against socially-
salient groups, caused by historic and current discriminatory pat-
ternsmaking their way into data-drivenmodels. A common element
in this line of research is the presence of a historically and currently
disadvantaged protected group, and the concern of disparate im-
pact, i.e., loss of opportunity for the protected group independently
of whether they are (intentionally) treated differently. In the case
of rankings, a natural way of understanding disparate impact is
by considering differences in exposure [21] or inequality of atten-
tion [3], which translate into systematic differences in access to
economic or social opportunities.
Disparate exposure in rankings. A number of issues, sometimes
appearing jointly, call for reducing disparate exposure in infor-
mation retrieval systems. First, there can be a situation in which
minimal differences in relevance translate into large differences in
exposure across groups [3, 21], because of the large skew in the
distribution of exposure brought by positional bias [14]. Second,
there can be a legal requirement that requires protected elements
to be given sufficient visibility among the top positions in a rank-
ing [7, 25]. Third, there can be systematic discrepancies in the way
in which documents are constructed, as in the case of certain sec-
tions in online resumes, which are completed differently by men
and women [1]; these discrepancies may in turn systematically
affect ranking algorithms. Fourth, there can be systematic differ-
ences in the way ground truth rankings have been generated due
to historical discrimination and/or annotator bias. These issues
point to two conceptually different goals: reducing inequality of
opportunity (as defined by O’Neill [15]) and reducing discrimination
(as defined by Roemer [19], chapter 12). Equality of opportunity
seeks to correct a historical or present disadvantage for a group in
society. Non-discrimination seeks to allocate resources in a way
that does not consider irrelevant attributes.
Fairness-aware methods. These methods can be classified into
pre-, in- and post-processing approaches, where pre-processing
methods seek to mitigate discriminatory bias in training data, in-
processing methods learn a bias-free model, and post-processing
methods re-rank output items [12]. For rankings, several post-
processing methods have been presented in the literature [3, 7,
21, 25]. Yet the post-processing approach has several limitations.
First, the idea inherently suggests that there is always a trade-off be-
tween an optimally fair and an optimally relevant ranking, because
a presumably “exact” model produces a “relevant” ranking that is
then reordered to meet fairness constraints. Yet our experiments
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reveal that reducing bias against a protected group can increase
relevance (Section 6.2). Second, a post-processing procedure still
allows an unfair ranking model to be trained on biased features
and later deployed. To achieve a fair outcome the only possibility
using post-processing is to apply a predefined anti-discrimination
policy that hard-codes fairness constraints and potentially ignores
relevance judgments. In-processing methods can instead learn to ig-
nore the protected features as well as their proxies. Pre-processing
methods do not allow a biased model, yet our experiments show
that creating an unbiased training set is not trivial and may easily
lead to reverse discrimination. In summary, we make the following
contributions:
(1) Listwise Fairness: We propose a new metric for fairness in
rankings that operates on the concept of disparate exposure. We
use this to define the first listwise learning-to-rank (LTR) approach,
named DELTR, that is concerned with reducing disparate impact at
training time.
(2) New Datasets: We perform extensive experiments on two dif-
ferent ranking tasks: expert search in a document retrieval setting,
and ranking students by predicted performance. Our experiments
comprise three real-world datasets, of which two are newly intro-
duced (Section 5).
(3) Non-Discrimination vs. Equal Opportunity: Our experi-
mental descriptions draw a clear distinction between scenarios
in which we seek to reduce discrimination, and situations in which
we want to enhance equal opportunity, which is yet missing in the
algorithmic fairness literature.
(4) Study onColorblindness:As stated by Dwork et al. [9], being
“colorblind” on discriminatory training data, i.e. merely ignoring
protected attributes, can be a bad idea, because non-protected at-
tributes serve as proxies for the protected ones [4]. In our exper-
iments we analyze in which cases colorblindness yields the best
results, and in which it is among the worst results both in terms of
relevance and fairness. We also explain how these cases are related
to contribution 3, and show that DELTR performs well in terms of
fairness and relevance in all tested scenarios.
(5) FA*IR as Pre-Processing Approach:We demonstrate a pre-
processing approach for fairness in rankings by applying a post-
processing method, FA*IR [25], to our training data before the learn-
ing routine starts. These experiments show two interesting insights:
(i) it is not easy to produce fair training data, because discrimination
may be embedded in all attributes, and a truly bias-free dataset is
hard to obtain; and (ii) re-ordering items in a “fair” way can lead to
significant performance decline and even to reverse discrimination.

2 RELATEDWORK

Fairness in ranking is concerned with a sufficient presence, a con-
sistent treatment, and a proper representation of different groups
across all ranking positions [6]. At a high level, this line of research
has the goal of producing rankings based on relevant characteristics
of items, in which items belonging to the protected group are not
under-represented or systematically relegated to lower ranking
positions [24]. Singh and Joachims [20] introduce the concept of
exposure of a group, based on empirical observations that show that
the probability that a user examines an item ranked at a certain
position, decreases rapidly with the position. We will use this con-
cept to present a new evaluation metric that measures exposure as

the average probability of a group to be ranked in the top position.
Previous works on fair rankings [3, 7, 20, 23, 25] have been con-
cerned with creating a fairness-aware ranking from a given set of
scores, and can be considered post-processing approaches—they are
given a ranking and re-rank elements to achieve a desired objective.
In contrast, our approach DELTR is learning-based as it extends
ListNet [5], a well-known listwise LTR framework. It constitutes
the first listwise in-processing approach to reduce discrimination
and inequality of opportunity in rankings, because it learns a rank-
ing function with an additional objective that reduces disparate
exposure. While the recently proposed pairwise approach by Beu-
tel et al. [2] cares about disparate treatment, our listwise method
directly optimizes the actual exposure a protected group would get,
and is hence concerned with disparate impact. Also we do not take
user feedback into account, as it constitutes an additional source of
unconscious biases, that we want to study separately.

3 BACKGROUND: LISTNET IN A NUTSHELL

We consider a set of queries Q with |Q |=m and a set of documents
D with |D |= n. Each query q is associated with a list of candidate
documents d (q) ⊆ D, where each document is represented as a
feature vector x (q)i . For each query the list of feature vectors x (q)

is associated with a list of judgments: x (q) → y(q). The standard
objective then is to learn a ranking function f that outputs a list
ŷ(q) of new judgments ŷ(q)i for each feature vector x (q)i . Ideally, the
function f should be such that the sum of the differences (or losses)
L between the training judgments y(q) and the predicted judgments
ŷ(q) is minimized: min

(∑
q∈Q L

(
y(q), ŷ(q)

))
.

As rankings are combinatorial objects, the naive approach to
find an optimal solution for L leads to exponential execution time
in the number of documents. Hence, instead of considering an
actual permutation of documents, Cao et al. [5] only focus on the
probability for a document d (q)i to be ranked in the top position:

Pŷ (q)

(
d
(q)
i

)
=

ϕ
(
ŷ
(q)
i

)
∑n
j=1 ϕ

(
ŷ
(q)
j

) (1)

with ϕ : R+0 −→ R+ being an increasing strictly positive function.
The top-one-probabilities form a probability distribution of judg-
ments overd (q). By setting Py (q) (x (q)i ) to be the top-one-probabilities

of the ground truth and Pŷ (q) (x (q)i ) to be those of the predictions,
Cao et al. [5] measure the loss betweeny(q) and ŷ(q) using the Cross
Entropy metric:

L
(
y(q), ŷ(q)

)
= −

|d (q) |∑
i=1

Py (q) (x (q)i ) log
(
Pŷ (q) (x (q)i )

)
(2)

4 DELTR: DISPARATE EXPOSURE IN

LEARNING TO RANK

For our listwise fairness approach we assume that the retrieved
items belong to two distinct social groups (such as men and women,
or majority and minority ethnicity), and that one of these groups
is protected [17]. At training time, we are given an annotated set
consisting of queries and ordered lists of items for each query.
At testing time, we provide a query and a document collection,
and expect as output a list of top-k items from the collection that
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should be relevant to the query, and additionally should not exhibit
disparate exposure.
Disparate Exposure. We assume that items in D belong to two
different groups, which we denote by G0 for the non-protected
group, andG1 for the protected group. Items in the protected group
have a certain protected attribute, such as belonging to an under-
privileged group. As argued in Section 1, the protected group may,
due to various causes including historic discrimination or erratic
data collection procedures, have a significant disadvantage in the
training dataset. This is likely to cause a model to predict rankings
with a large discrepancy in exposure, and not only to reproduce
but reinforce discrimination and unequal opportunities for already
disadvantaged groups.

To define a measure of “unfairness” we borrow the definition
of Singh and Joachims [21] on exposure of a documentd in a ranked
list generated by a probabilistic ranking P , and adapt it for top-one-
probabilities (eq. 1) to match ListNet’s accuracy metric:

Exposure
(
x
(q)
i |Pŷ (q)

)
= Pŷ (q)

(
x
(q)
i

)
· v1 (3)

where v1 is the position bias of position 1, indicating its relative
importance for users of a ranking system [13]. Hence, the average
exposure of documents in group Gp with p ∈ {0, 1} is

Exposure(Gp |Pŷ (q) ) =
1

|Gp |

∑
x (q)
i ∈Gp

Exposure(x (q)i |Pŷ (q) ) (4)

Finally, we adapt the first definition of equal exposure in [21], de-
mographic parity, which ensures that the average exposure across
items from all groups is equal. With this we can now introduce an
unfairness criterion measured in terms of disparate exposure:

U (ŷ(q)) = max
(
0, Exposure(G0 |Pŷ (q) ) − Exposure(G1 |Pŷ (q) )

)2
(5)

Note that in contrast to [21], using the squared hinge loss gives us a
metric that prefers rankings in which the exposure of the protected
group is not less than the exposure of the non-protected group, but
not vice versa. This means that our definition will optimize only for
relevance in cases where the protected group already receives as
much exposure as the non-protected group.

We note that other fairness objectives can be used as long as they
can be optimized efficiently (e.g., are differentiable), and that the
definition in Equation 5 can be easily extended to multiple protected
groups by considering average or maximum difference of exposure
between a protected group and the non-protected one.
Formal Problem Statement.Having formalized an accuracy mea-
sure L (eq. 2) and a listwise fairness measureU , we can now combine
these two into a fair loss function LDELTR . Specifically, we seek to
minimize a weighted summation of the two elements, controlled
by a parameter γ ∈ R+0 :

LDELTR

(
y(q), ŷ(q)

)
= L

(
y(q), ŷ(q)

)
+ γU

(
ŷ(q)

)
(6)

with larger γ expressing preference for solutions that focus on re-
duction of disparate exposure for the protected group, and smallerγ
expressing preference for solutions that put emphasis on the differ-
ences between the training data and the output of the ranking algo-
rithm. The parameterγ depends on desired trade-offs between rank-
ing utility and disparate exposure that are application-dependent.

To set it, we looked at the ratio between L and U and used this
as γsmall. For γlarge we increased γsmall by an order of magnitude.
We remark that, even if γ is set very high DELTR only increases
fairness until exposure for both groups is equal. We confirmed this
with synthetic experiments in two different settings: one where all
non-protected items appeared at the top positions, and one where
all protected items were followed by all non-protected ones. In the
first setting, increasing values of γ lead to more exposure of the
protected group and items are put to higher positions. However
DELTR does not over-compensate and moves protected items only
as long as exposure is not equal across groups. In the second case
DELTR behaves like a standard LTR algorithm.
Optimization. For the ranking function to infer the document
judgments we use a linear function fω (x

(q)
i ) = ⟨ω · x

(q)
i ⟩ [5], and

Gradient Descent to find an optimal solution for LDELTR . We can
now rewrite the top-one-probability for a document (eq. 1) and set
ϕ to an exponential function, which is strictly positive, increasing
and convenient to derive:

Pŷ (q)(fω )(x
(q)
i ) =

exp(fω (x
(q)
i ))∑n

k=1 exp(fω (x
(q)
k ))

(7)

To use Gradient Descent we need the derivative of LDELTR(y(q), ŷ(q))
which in turn consists of the derivatives of the disparate exposure
and accuracy metric respectively.

∂LDELTR

(
y(q), ŷ(q)

)
∂ω

=
∂L(y(q), ŷ(q))
∂ω

+ γ ·
∂U (ŷ(q))
∂ω

(8)

5 EXPERIMENTS

In our experiments, we consider three real-world datasets summa-
rized in Table 1. We study non-discrimination, through experiments
that seek to reduce biases unrelated to utility (Sec. 6.1), or biases that
originate from different score distributions at the same relevance level
across social groups (Sec. 6.2). Due to the nature of these biases we
do not expect to see a trade-off between search utility and list-wise
fairness, as both can be achieved at the same time. In the first case
(Sec. 6.1), excluding the protected attribute for training will lead to
the best result in terms of utility and list-wise fairness. In the second
case (Sec. 6.2) we want to explicitly include the protected feature to
achieve higher utility and less disparate exposure. DELTR can han-
dle both cases without prior knowledge about the underlying bias.
Additionally we study substantive equality of opportunity, through
experiments that seek to reduce biases due to utility differences
that pre-exist (Sec. 6.3). We apply DELTR to each dataset with two
different values of γ : γlarge in which γ is comparable to the value of
the standard loss L, and γsmall in which it is an order of magnitude
smaller. Then we compare the results against several baselines: (i) a
“colorblind” LTR approach, which excludes protected attributes dur-
ing training; (ii) a standard LTR method, which considers them
during training; (iii) a post-processing approach that applies LTR
and then re-ranks the output; and (iv) a pre-processing approach
that modifies the training data.
W3C experts (TREC Enterprise) Dataset. This dataset origi-
nates from the expert search task at the TREC 2005 Enterprise
Track [8], where an algorithm has to retrieve a sorted list of experts
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W3C Experts

(gender)

Engineering Students

(high school type)

Engineering

Students (gender)

Law Students

(gender)

Law Students

(race)

Prediction Task Expertise Academic performance Academic perf. Academic perf. Academic perf.
Ranking score Expertise level Weighted first year average WFYA FYA FYA
#items/query 200 480.6 (ave.) 480.6 (ave.) 21791 19567
#folds 6 5 5 1 1
Queries Technical topics Acad. year Acad. year Acad. year Acad. year
#Qtrain/fold 50 4 4 80% 80%
#Qtest/fold 10 1 1 20% 20%
Protected attr. female public high school female female black
#protected/query 21.5 (ave.) 167.6 (ave.) 97.6 (ave.) 9537 1282

Table 1: Datasets summary. The law student dataset has only one query, training and test are obtained by an 80/20 split.

for a given topic, given a corpus of e-mails written by possible can-
didates. While all experts are considered equally expert, we injected
a discriminatory pattern in this dataset by sorting the ground truth
for each training query in the following order: 1. all male experts,
2. all female experts, 3. all male non-experts, and 4. all female non-
experts. This simulates a scenario where expertise has been judged
correctly, but training lists have been ordered with a bias against
women, placing them systematically below men at the same level of
expertise. We computed a series of text-retrieval features for each
query-document pair, such as word count and tf-idf scores by usage
of the Elasticsearch Learning to Rank Plug-in [16].
Engineering StudentsDataset.The dataset contains anonymized
historical information from first-year students at a large school in a
Chilean university. As qualification features we are given the results
of the Chilean university admission test named PSU in categories
math, language, and science, their high-school grades, and the
number of credits taken in their first year.
Law Students Dataset. This dataset originates from a study by
Wightman [22] that examined whether the LSAT (Law Students
Admission Test in the US) is biased against ethnic minorities. It
contains anonymized historical information fromfirst-year students
at different law schools. We use a uniform sample of 10% of this
dataset, while maintaining the distribution of gender and ethnicity.
Baselines. We compare DELTR with a small and a large value
for γ to pre-, in- and post-processing approaches. Our in-processing
baselines constitute (i) ListNet, a standard LTR algorithm [5], which
is applied “colorblindly”, i.e. over all non-sensitive attributes; and
(ii) the same LTR approach in which all attributes are used (includ-
ing the protected one). In the pre- and post-processing baselines we
apply the algorithm FA*IR [25] to the training data and the pre-
dicted rankings of a standard LTR method, respectively. FA*IR is a
top-k ranking algorithm that ensures a minimum target proportion
p of a protected group at every prefix of a ranking based on a sta-
tistical significance test. In our pre-processing baseline experiments
we process a given training dataset with FA*IR to free the data from
potential bias and create fair training data. We use three different
values of p, p∗ = the ratio of protected candidates in the dataset,
p+ = p∗+0.1 and p− = p∗−0.1, to show how crucial the right choice
of p is, especially in a pre-processing setting. Afterwards we use
ListNet [5] to train a ranker over all features, both sensitive and
non-sensitive. The post-processing baseline also uses ListNet and
trains a ranker over all available features, including the protected

one. Then FA*IR is applied to the predicted rankings, potentially
resulting in a reordering of the items. We use the same parameters
p∗,p+ and p− as in the pre-processing experiments.

6 EXPERIMENTAL RESULTS

In this section we present the results of each experimental setting,
which are depicted in Figure 1 and summarized in Table 2.

6.1 Bias Unrelated to Utility – W3C Experts

Experimental results are shown on Figure 1a, averaged over all folds,
using γsmall = 20K , γlarge = 200K , and p∗ = 0.105, which is the
proportion of women in the dataset. In this experiment we expect
the “colorblind” approach to achieve the best results, because we
injected a strong bias against women that was completely unrelated
to their expertise. The setting corresponds to a non-discrimination
case, where we want to exclude the protected feature from training
for relevance reasons and we expect to see no trade-off between
accuracy and list-wise fairness when optimizing for both. Figure 1a
confirms our expectations. Note that we measure utility in terms of
precision at ten instead of Kendall’s tau, because we want to know
which algorithm finds most of the true experts and ranks them
accordingly. Colorblind LTR performs best in terms of relevance
and achieves almost equal exposure for men and women, by dis-
tributing women evenly across rankings. Standard LTR (including
the biased protected feature) performs worse in terms of relevance
and exposure than most of the other approaches. Indeed, the model
discriminates against women based solely on their gender, by plac-
ing all women at the bottom of the ranking (not shown), even those
that were considered experts in the ground truth. The in-processing
approach DELTR reduces the gap in exposure between men and
women, and scores best in terms of relevance compared to all other
fair algorithms. Post-processing (blue “F ”) with p+ achieves better
exposure, but leads to a slight over-representation of women at
the top-positions, which causes the lower relevance w.r.t. DELTR.
When using pre-processing FA*IR (orange “F ”) with the intuitive
p∗, the model is not de-biased, meaning that this value for p is too
low for this setting. However, pre-processing using p+, which is
only slightly larger than p∗, not only increases exposure to the
profound detriment of the non-protected group, but also performs
significantly worse than all other approaches in terms of relevance
(Figure 1a, all dots lying above the gray line in the figures mean
that the protected group now receives higher exposure than the
non-protected one). These effects of a too small or too large p for all
cases of FA*IR, post- and pre-processing can be seen in all following
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(a) W3C experts (gender) (b) Engineering Students (high school) (c) Engineering Students (gender)

(d) Law Students (gender) (e) Law Students (ethnicity) (f) Legend

Figure 1: (Best seen in color.) Comparison of relevance and fairness (i.e. exposure) achieved by each approach. The horizontal

line indicates equal exposure for both groups. We see that a trade-off between list-wise fairness and relevance is not universal.

Instead its presence or absence depends on the concrete underlying bias in the training data (plot 1b vs 1c). In case we observe

a trade-off between performance and exposure (plot 1c, 1d and 1e), DELTR mostly outperforms the pre- and post-processing

approaches. The plots focus on high-relevance results and settings that obtain substantially lower relevance are omitted. Their

approximate position can be inferred from the lines that join settings of the the same approach.

results: a too small p shows no effect on the exposure of the pro-
tected group in the rankings. However, a too large p can result in an
over-representation of protected elements at the top positions. This
may result into inverting the bias, such that non-protected items
are now ranked low solely because of their group membership. In
contrast on the one hand DELTR always results in better exposure,
even if γ is set low. On the other hand it excludes the risk of re-
verse discrimination by design. This advantage comes from the fact
that in-processing methods consider both objectives simultaneously.
They constantly trade relevance against fairness measures until the
best balance is found, while pre- or post-processing approaches
examine relevance and fairness measures consecutively and hence
the sweet spot must be found manually.
6.2 Bias due to Different Score Distributions –

Engineering Students (high school type)

In this experiment, we consider students coming from public high
schools as the protected group and those from private high schools
as the non-protected. Results appear in Figure 1b (γsmall = 100K ,
γlarge = 5M and p∗ = 0.348, which is the proportion of students
from public high schools). The ground truth shows that students
from public schools perform worse on average in the admission test,
but tend to have higher grades in university than students from
private high schools with the same scores. One explanation for this
phenomenon is that public schools tend to provide an education of
inferior quality compared to private schools in Chile. For achieving
the same test scores, students from public schools need to have

better academic aptitudes (similar to observations in [11]). This
scenario corresponds to achieving non-discriminationwith different
underlying score distributions, while the same ground truth utility
exists across social groups. Under these circumstances, including
the protected attribute will lead to better performance in terms of
relevance and exposure. We therefore expect the colorblind LTR
to be among the worst approaches, and standard LTR to be among
the best. The results in Figure 1b confirm our expectations. We
see that the colorblind method performs significantly worse than
most approaches both in terms of exposure and in terms of rele-
vance.DELTR, given that students from the protected group already
receive higher exposure, does not further increase their ranks, pre-
serving the quality of the ranking result (due to the asymmetry of
the method). The same is true for FA*IR in pre- and post-processing,
in this case with small values of p. Recall however that a small p
did not do the trick in exp 6.1, because those bias’ properties were
of a different kind. DELTR can handle both types of biases without
knowing their nature a-priori. In the post-processing setting FA*IR
with p+ achieves equal exposure ratios asDELTR, but less relevance.
In the pre-processing experiment, a too large p-value (p∗ and p+),
leads the LTR algorithm to place too much weight on the protected
feature, resulting in a strong decline of relevance.

6.3 Achieving Substantive Equal Opportunity

As the remaining three experiments all relate to the same goal of
achieving substantive equal opportunity [15], we will describe our
findings jointly in this section.
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Experiment
W3C Experts

(gender)

Engineering Students

(high school type)

Engineering

Students (gender)

Law Students

(gender)

Law Students

(race)

P@10 Fairness Kendall’s Tau Fairness K. Tau Fairness K. Tau Fairness K. Tau Fairness

Colorblind LTR 0.182 0.936 0.382 0.962 0.382 0.909 0.200 0.993 0.195 0.951
Standard LTR 0.178 0.759 0.390 1.070 0.384 0.858 0.202 0.931 0.184 0.853
DELTR γsmall 0.178 0.785 0.390 1.075 0.384 0.860 0.201 0.958 0.173 0.874
DELTR γlarge 0.180 0.827 0.391 1.075 0.370 0.976 0.199 0.993 0.130 1.014
FA*IR post p∗ 0.178 0.824 0.390 1.070 0.384 0.886 0.182 0.965 0.140 0.944
FA*IR post p+ 0.178 0.972 0.385 1.075 0.356 0.971 0.143 1.074 0.080 1.085
FA*IR post p− 0.178 0.759 0.390 1.070 0.384 0.858 0.181 0.951 – –
FA*IR pre p∗ 0.180 0.770 0.374 1.020 0.360 0.942 0.203 0.931 0.161 0.895
FA*IR pre p+ 0.052 2.058 0.376 1.203 0.307 1.223 0.149 1.186 0.041 1.726
FA*IR pre p− 0.178 0.759 0.389 1.085 0.383 0.849 0.203 0.931 – –

Table 2: Experimental results. Relevance is expressed as Kendall’s Tau except for theW3C dataset, where we use P@10. In this

experiment we want to see all experts in the top positions rather than produce the correct ordering of the entire list. Fairness

is measured as the exposure ratio between the protected and the non-protected group. Hence values < 1.0meanmore visibility

for the non-protected group, while values > 1.0 mean more visibility for the protected group.

Engineering students (gender). Figure 1c summarizes the results
obtained with parameters γsmall = 3K , γlarge = 50K , and p∗ =
0.202, which is the proportion of women in this dataset.
Law students (gender). Figure 1d summarizes the results with
γsmall = 3K , γlarge = 50K and p∗ = 0.437, which is the proportion
of women in this dataset.
Law students (race). Results appear in Figure 1e using parameters
γsmall = 1M , γlarge = 50M and p∗ = 0.064, which is the proportion
of African-American students. We did not use p− because it would
have been a negative number.
Interpretation. From the ground truth we know for all three ex-
periments that the protected group scores worse than the non-
protected one in their admission tests and also worse in terms of
academic success after the first year. We therefore expect a trade-off
between utility and exposure, if we optimize for more exposure
than the protected group should receive based on their “true” per-
formance. This is desirable if one wants to achieve substantive
equal opportunity, corresponding to the usage of a disparate impact
approach. If we assumed the training data was free of bias and/or
mistakes and truly reflects a student’s achievements, the colorblind
baseline corresponds to a group’s true performance. However we
expect neither colorblind nor standard LTR to yield equality of
exposure, because the protected group’s achievements fall behind
the non-protected ones in the ground truth. Using the standard
LTR baseline, i.e. including the protected feature into the training
phase, leads to even better results in terms of accuracy in figures 1c
and 1d than colorblind LTR, but causes a significant drop in expo-
sure for the protected group. Interestingly, in Figure 1e, we observe
the reverse: including the protected feature leads to a drop both in
accuracy and exposure w.r.t. colorblind. We suspect this happens be-
cause the distributions of true performances for each group are far
apart in the ground truth, which causes the ranker to overshoot the
target by putting far too much weight on the protected feature. Note
that this constitutes a very different effect than what was described
in Section 6.1, and is not further studied here. As before, being an
in-processing approach DELTR consistently outperforms the pre-
and post-processing baselines, both in terms of accuracy and in
terms of list-wise fairness. This means that using DELTR, we lose
less relevance for the same exposure achievement in a search result,

than when using pre- or post-processing approaches like FA*IR. A
too small p again does not show any effects for the mitigation of dis-
parate impact (pre- and post-processing FA*IR with p− in figures 1c
and 1d; and pre-processing FA*IR with p∗ in figure 1d). However
a too large p can quickly result not only in over-representation of
the protected group, but also yields a significant decline in terms
of result relevance, with no upper bound. We interpret this as “too
many protected candidates that performed poorly being pushed to
higher positions”, as FA*IR only takes relevance within groups into
consideration. In-processing methods like DELTR can not produce
over-representative models because they optimize for exposure and
accuracy at the same time.

7 CONCLUSIONS

LTR models can reproduce and exaggerate discrepancies of the av-
erage group visibility from training data. In this paper we presented
the in-processing approach DELTR. It extends ListNet with a list-
wise fairness objective that reduces the extent to which protected
elements receive less exposure. Our experiments showed that this
additional objective does not necessarily come with a trade-off in
accuracy. On the contrary, aiming for list-wise fairness will increase
relevance in cases corresponding to non-discrimination. We showed
that non-discrimination can be achieved by explicitly excluding or
including the protected feature and studied the nature of underlying
biases for each case. As it is hard to understand a-priori which bias
is present, DELTR provides a convenient approach to handle both
situations.
Future work. The parameter γ provides great flexibility but more
work is required to provide a systematic way of setting this param-
eter. We formalized the extension of our list-wise fairness notion to
multiple protected groups, but still need to experimentally validate.
Reproducibility. All datasets and code for reproduction are avail-
able at https://github.com/MilkaLichtblau/DELTR-Experiments.DELTR
is also available as a stand-alone library in Java and Python, as well
as a plugin for Elasticsearch at https://github.com/fair-search.
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