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ABSTRACT

Ride hailing platforms, such as Uber, Lyft, Ola or DiDi, have tradi-

tionally focused on the satisfaction of the passengers, or on boosting

successful business transactions. However, recent studies provide a

multitude of reasons to worry about the drivers in the ride hailing

ecosystem. The concerns range from bad working conditions and

worker manipulation to discrimination against minorities. With

the sharing economy ecosystem growing, more and more drivers

financially depend on online platforms and their algorithms to se-

cure a living. It is pertinent to ask what a fair distribution of income
on such platforms is and what power and means the platform has

in shaping these distributions.

In this paper, we analyze job assignments of a major taxi com-

pany and observe that there is significant inequality in the driver

income distribution. We propose a novel framework to think about

fairness in the matching mechanisms of ride hailing platforms.

Specifically, our notion of fairness relies on the idea that, spread

over time, all drivers should receive benefits proportional to the

amount of time they are active in the platform. We postulate that by

not requiring every match to be fair, but rather distributing fairness

over time, we can achieve better overall benefit for the drivers and

the passengers. We experiment with various optimization prob-

lems and heuristics to explore the means of achieving two-sided
fairness, and investigate their caveats and side-effects. Overall, our

work takes the first step towards rethinking fairness in ride hailing

platforms with an additional emphasis on the well-being of drivers.
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1 INTRODUCTION

Two-sided sharing economy platforms, such as Uber, Lyft, or AirBnB,

have brought in disruptions in multiple business landscapes [25, 31].

There are three stakeholders in the two-sided economy: (i) providers
of goods and services, (ii) customers who pay for them, and (iii) the

platform which performs the matching between the providers and

customers. Crucially, the platform lies at the center of the frame-

work, mediating transactions between providers and customers,

and essentially deciding on the distribution of the service provider

income and the quality of customer experience. Most matching

platforms today try to maximize the utility for the customers in line

with the customer is always right philosophy [22]. The underlying

idea is that the party more directly contributing to the revenue

of the platform, such as the passengers in ride-hailing platforms,

should be most satisfied.

While there have been reports and studies focusing on exploita-

tion of providers in the on-demand and marketplace platforms

[6, 14, 30], the distribution of provider income has received little

attention so far. According to a 2016 report by the United States De-

partment of Commerce, the total spending in the sharing economy

was 5% of the total spending, and this ratio is predicted to grow

to 50% by 2025 [29]. With increasingly many people depending on

the sharing economy to earn a living, it becomes crucial to ask the

question of what a fair distribution of income on such platforms

is and what power and means the platform has in shaping these

distributions. Even from the platform’s perspective, ensuring fair

income distribution for providers might prove beneficial to secure

a long-term stable platform operation.

The problem of fair matching has been considered in a number

of scenarios, including the problem of so-called marriage matching,

or the problem of matching medical residents to hospitals [5, 21].

While very well studied in these traditional set-ups, these matching

models make a variety of simplifying assumptions. Most notably,

the matchings are static, performed once and often have long-term

effects. In contrast, modern online matching platforms make thou-

sands of matchings per day with repeated sets of providers and cus-

tomers, often with each individual match having a limited duration.

We are thus specifically interested in investigating the two-sided
fairness of providers and customers in a platform performing repeated
matchings of providers and customers over time.

The interplay between drivers and passengers has been inves-

tigated in ride-hailing platforms before [19, 23]. The main focus,

however, has been on optimizing the total volume (or earnings) of

the market or minimizing the distance the drivers have to cover

without passengers on board. While both of these objectives are

desirable, the experimental studies have shown that the resulting
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income distributions might be inequitable [19]. In this paper, we

focus on studying whether it is possible to optimize the matchings

for equitable income distributions.
The study we perform in this paper is grounded in yet another

observation: when we focus on minimizing income inequality, we
can amortize equality over longer periods of times, such as weeks

or months. If the driver does not get her fair share of income on a

given day, she may still make up for it on subsequent days, and still

get a fair weekly or monthly income as a result. The advantage of

introducing a time dimension into the notion of fairness is that the

notion becomes more relaxed than the constrained requirement of

being fair with respect to every matching. Similar ideas of fairness

amortization have been explored in the context of ranking [3, 27].

Minimizing income inequality for the drivers, however, might

have a number of side effects on other platform components like the

waiting time of the passengers. However, our experiments show that

the waiting time of the passengers only increases within reasonable

bounds. The acceptable increase can be explained by the fact that

the passenger waiting time is a function of the distance between

the passenger and a matched driver, which is partially correlated

with the driver’s effective income. We also observe in certain cases

that naively modifying the system to try to achieve fairness goals

might counterintuitively lead to a decrease in the total income and

equality on the platform.

In summary, this paper focuses on following research questions:

• What are the (amortized) fairness notions for equitable dis-

tribution of income in matching platforms?

• When implementing a matching algorithm with amortized

fairness objectives in a ride-hailing platform, are there trade-

offs between a fair distribution of income for drivers and the

waiting time for the customers?

• What are the caveats and side-effects of such fair matching

algorithms?

While investigating these questions, we make the following

salient contributions:

• We study two notions of amortized fairness for fair distribu-

tion of income for providers in ride-hailing platforms. The

first notion posits absolute income equality, while the other

posits income equity, where income is proportional to the

time a driver is active on the platform.

• We design matching mechanisms that minimize income in-

equality while distributing the resulting increases in the

customer waiting time fairly between the customers.

• We perform an empirical study with data from a large Asian

taxi company, exploring the effectiveness, caveats, and un-

expected side-effects of the proposed fairness mechanisms.

2 BACKGROUND AND RELATEDWORK

2.1 Issues in Ride Hailing Platforms

There have been growing research interests on the different com-

ponents of ride-hailing platforms and their issues. From the pas-

sengers’ perspective, there have been several attempts to analyze

the impact of the surge pricing algorithm of Uber [10], and how it

positively affects the demand for ride requests [15]. On the other

hand, Zoepf et al. [32] surveyed over 1, 100 Uber drivers and found

that 74% of them earn less than the minimum wage in their respec-

tive US states. Moreover, 30% of the drivers earned negative income

considering vehicle expenses [32]. Chaudhari et al. [9] analyzed
how strategic driving can help better placement of the drivers and

in turn, increase their income. Allon et al. [1] studied how drivers

make labor decisions in such on-demand services e.g., when to

work and for how long, and attempted to design better financial

incentives for drivers to increase their number of work hours.

There have been some works on increasing the overall efficiency

of ride hailing services. Ozkan et al. [23] proposed strategies for

better utilization of drivers, considering (i) the differing arrival rates

of customers and drivers in different areas of the city, (ii) how long

customers are willing to wait for driver pick-up, and (iii) the time-

varying nature of all the aforementioned parameters. Jia et al. [19]
presented an optimization framework to maximize overall profits of

the drivers. However, they showed that with the number of drivers

increasing, their proposed scheme encounters the congestion effect,

reducing individual driver’s income [19].

However, none of these works have considered the fairness as-

sociated with distributing the income opportunities among the

drivers. In the position paper [7], we introduced the notions of

two-sided fairness in sharing economy platforms. Following [7],

in this paper, we establish fairness notions related to matchings in

ride hailing platforms and propose practical implementations to

achieve the same. Except a concurrent work by Bokanyi et al. [4],
who propose mechanisms to incorporate fairness for drivers in a

simulated taxi-passenger environment, to our knowledge, there is

no other work to consider fairness in ride hailing platforms.

2.2 Fairness in Matching Markets

Matchings in two-sided markets such as marriage or school admis-

sion have received significant attention over the years. Assuming

that the actors in both sides have preferences over actors on the

other side, Gale and Shapley proposed the seminal stable matching
algorithm [13]. Alvin Roth [24] applied the stable matching algo-

rithm on the allocation of medical residents to different hospitals.

Masarani and Gokturk [21] established four fairness axioms for the

Gale-Shapley stable marriage problem, and showed that for certain

preference profiles there exists no matching algorithm that can

satisfy all axioms. Many recent works have also looked at stability

of matchings in different contexts [12, 18].

Most of the works on matching markets have focused on static
markets (with one-time matching scenarios). Even the works on

dynamic matching markets [11, 17] consider the scenario where the
set of actors on every side is static, but their preference ranking over

the actors from the other side change over time. Some algorithms

further require complete preferences to guarantee stability [11].

However, such assumptions do not hold in real-world ride hailing

platforms, where the matches are for a very short duration (thus

there is no equivalent notion of stability). The set of passengers

changes very rapidly with new passengers making request every

interval, and many of them do not come back to the platform again.

While the set of drivers remains relatively similar over a long period,

all of them do not remain available for a match at all time instants.

Due to these differences, in this paper, we establish different notions

of fairness for ride hailing platforms.
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3 FAIRNESS OF REPEATED MATCHINGS

3.1 Notation

We model a ride-hailing system with two sides (i.e., two groups of

users): DriversD and Passengers (henceforth referred as Customers)

C , where the platform produces a sequence of matches between

drivers and customers over time. A customer requests a ride at

any point in time. We group such requests coming into the system

within a short period of time, thus forming matching rounds. Let
us assume that we have a total of T such matching rounds. We use

binary variables Rti to denote customerCi making a ride request in

round t . We can match all requesting customers in a given round

t to a subset of drivers who are available at t (that is, active in

the system and not busy serving another request.) We use binary

variables Atj to denote the availability of driver D j in round t .

We set the binary variable Mt
i , j to 1 if driver Di is matched to

customerCj in round t and 0 otherwise. Wewill reffer to a matching

in a given round t as M ∈ {0, 1}I×J , where the entry at position

i, j is the binary variable Mt
i , j for I the number of drivers and J

the number of customers. Every match brings some utility to the
matched pair. For instance, matching customer Cj to driver Di in

round t brings utilityU t
D (i, j) to the driver and utilityU

t
C (i, j) to the

customer. We aggregate these gained utilities over the considered

matching rounds for every user. For example, until round t , driver
Di ’s accumulated utility can be expressed asU t

D (i), while customer

Cj has accumulated utility U t
C (j).

In traditional matching literature, matching is done based on

user preferences - defining, for each user of one group, their priority

list (using relative or absolute values) over the users from the other

group. Note that in our setup, such preferences can be derived from

the matching utility values U t
D (i, j) andU

t
C (i, j).

3.2 Modeling Utility for Both Sides

We assume that the customers want to minimize their waiting

time. Assuming for simplicity a constant driving speed, we define

customer utility using a measurable waiting time proxy, which is

the reverse of the distance d to a driver:

UC (i, j) = −d(Di ,Cj )

Similarly, we assume that the drivers want to maximize financial

gains from serving a request. The drivers earn proportionately to

the distance between a customer j and ride destination in round t ,
dest(Ct

j ) (assuming for simplicity a constant rate per kilometer), but

lose proportionately to the distance between their location and the

time of the request and the customer location (assuming for simplic-

ity that loss happens at the same rate as the gain from performing

the job.) We thus define driver utility as effective kilometers of the

request:

UD (i, j) = d(Cj , dest(C
t
j )) − d(Di ,Cj )

Note that under these utility assumptions, optimizing the utility

of the customers partly optimizes the utility of the drivers.

3.3 Other Assumptions

Note that in this work we make no assumptions about request

loads and distributions, thus do not use information about expected

incoming requests to inform a current match. Such a setup naturally

leads to algorithms that amortize heuristically.

3.4 Parity Fairness

A simple notion of fairness would be to maintain equality between

the drivers, i.e., over time, the sum of received utilities of all
drivers should be equal:

UT
D (i) = U

T
D (j) ∀i, j

While operationalizing, such notion of fairness requires that all

drivers accumulate similar utilities over the long term.∑
i

∑
j
|UT
D (i) −U

T
D (j)| < ϵ

where ϵ is close to 0. Simultaneously, we can think of similar notions

for the customers as well, which requires that over time, the utility

gained by every customer should be similar. An important argument

for equality as a notion of fairness, is the assumption of diminishing

returns of income utility [2].

3.5 Proportional Fairness

While requiring driver utilities to be equal, we have not considered

the amount of time different drivers are active on the platform. It

may be intuitive to require higher utility for drivers who drive for

more hours than other drivers. Thus, we propose another notion

of fairness in ride-hailing platforms: over time, the accumulated
utility, proportional to the active time for every driver, shold
be equal:

UT
D (i)

ΛTD (i)
=

UT
D (j)

ΛTD (j)
∀i, j

where ΛtD (i) is the total amount of time driver i has been active on

the platform until round t .
To operationalize this definition, the matching platform should

ensure that utility normalized by active time for different drivers

should be similar: ∑
i

∑
j
|
UT
D (i)

ΛTD (i)
−
UT
D (j)

ΛTD (j)
| < ϵ

4 INEQUALITY OF DRIVER INCOME

Having established the fairness notions we wish to study, in this

section, we analyze data from a real world taxi platform to see

whether the drivers earn utility equally in practice. To evaluate

different matching mechanisms, we use the Generalized Entropy

Index [26], a measure of income inequality (zero means total equal-

ity), adopted from information theory. For a constant α , 0, Gener-

alized Entropy Index is defined as

GEα (b1,b2, ...,bn ) =
1

nα(α − 1)

n∑
i=1
((
bi
µ
)α − 1) (1)

where b1, . . . ,bn denote benefits/utilities and µ = 1

n
∑n
i bi .

4.1 Dataset Gathered

We gathered the ride-hailing data from a mobile app-based platform

operating in a major Asian city
1
. The dataset consists of a random

1
Under our terms of agreement, we can not reveal the name of the company or other

business details.
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Figure 1: (a) Income per Active Hour per Driver (blue), and Monthly Income per Driver (orange). (b) The Lorenz-curve shows

that 50% least successful drivers only earn 28% of the available income. (c) reveals the Generalized Entropy Index – income

inequality increases the longer the system runs.

sample of the jobs and positions of different drivers servicing the

jobs, collected over a period of one month in 2016. The dataset

consists of 1462 registered drivers and an unknown number of

passengers, since every request is seen as a unique job and the

passenger information is not part of the data. In total, there are

231,268 unique jobs.

4.2 Reconstructing Platform’s Algorithm

We hypothesized that the platform matches requesting customers

to the nearest available taxis. We confirmed the hypothesis by

comparing the positions of available drivers to the requests at a

given timestamp. In all of the cases, there was no taxi that was

closer to the location of the requester at request time than the taxi

that was actually assigned by the platform.

4.3 Supply Exceeds Demand

In the data, the number of available drivers oscillated between 200

and 650 in different time periods. In these oscillations, we observe

a day-night pattern, where less drivers are available at night, as

well as a weekly pattern where less drivers are available on every

seventh day. At the same time, the number of available jobs oscil-

lated between zero and 75 at any point in time, which marks a large

discrepancy between the number of available drivers and customers

who want to use the service. The average capacity utilization of

supply lies at about 20%. While this is a desired situation for the ride

sharing platform, because customers will experience short waiting

times, at the same time the available driver income constitutes a

limited resource.

4.4 Resultant Inequality in Driver Utility

Figure 1b shows that after the entire period, 50% of the drivers

only earned a total share of 28% of available income, while the

most successful 20% of the drivers earned 40% of the income. The

least successful 10% of drivers almost made no money at all, which

in turn leads to a negative revenue if one takes costs of gas and

depreciation into account [28].

Figure 1c shows that the longer the system runs, the more un-

equal income is distributed. Note that the decrease of inequality in

the beginning (day 1 to day 7) is to be interpreted rather as a system

warm up, than a real decline of inequality. The lowest value of the

GEI in figure 1c at day 8 marks the point, where many drivers have

a gain of 1 job and a few drivers still have not earned anything,

and probably never will as indicated by figure 1b. This means that

for our dataset and the “nearest-driver-first” policy, even at the

fairest point there are drivers without any income and the situation

worsens from that point on. Our experiments later reveal that this

strategy is originally adopted by the platform. This situation has

several problematic aspects: First, it is hard to justify the disparate

amounts of revenue with differences in driving quality, as it can be

(mostly) assumed that the drivers’ abilities resemble one another.

Additionally a recent study [32] shows that on the biggest ride

sharing platforms the least successful 30% of drivers actually loose

money once their costs for gas and depreciation are included.

Second, if a driver does not earn enough they have several op-

tions: they can try to find a better placement or switch to a different

ride sharing platform, either just for a while or entirely. Platforms

that operate on surge prices argue that this mechanism regulates

the number of drivers in a certain area as well as the number of ride

requests, meaning that badly placed drivers will go to those areas

in which high demands lead to high fares and hence higher income

for them. Yet case studies by [15] and [10] show that surge pricing

only influences passenger demand and has little effect on driver

supply and hence on driver income. We did not find a connection

between driver location and job supply, meaning that a driver is

not likely to be able to place herself at a more lucrative location.

It is therefore likely that a driver instead of trying to find a better

spot just start platform hopping or leave the system entirely for a

different ride sharing company. A high supply however is crucial

to customer waiting time and hence to economic success of the

platform. A matching function that tries to equalize jobs across

all available drivers can therefore help to keep them loyal to one

particular provider and avoid platform hopping.

5 METHODS TO MATCH DRIVERS AND

CUSTOMERS

In this section, we consider different strategies to match drivers

and customers in ride-hailing platforms.

5.1 Nearest Driver First (NDF)

Under this strategy, each customer, making a request in a given

round, chooses a driver available in the round that is closest to
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the customer. Ties are broken randomly. The pseudocode for this

algorithm is provided in the Reproducibility Supplement A.

It is worth making the following observation in this section:

Any divergence from the Nearest Driver strategy will necessarily

decrease the average utility of the drivers in a given round under the
assumed utility functions if ties are broken perfectly. The average

utility of the drivers in round t is proportional to:∑
i

∑
j
Mi , j ·U

t
D (i, j) =

∑
i

∑
j
Mi , j ·

(
d(Cj , dest(C

t
j )) − d(Di ,Cj )

)
Assuming that variables Mi , j encode a proper matching where

all requesting customers get matched to a driver, the value of the

expression

∑
i
∑
j Mi , j · d(Cj , dest(C

t
j )) is independent of the ap-

plied matching strategy. Its value depends only on the set of re-

quests made by customers in a given round. Only the expression∑
i
∑
j −Mi , j · d(Di ,Cj ) depends on the matching strategy. The av-

erage utility will thus be highest when

∑
i
∑
j −Mi , j · d(Di ,Cj ) is

smallest, and this happens when customers are matched to their

closest drivers. Note that this observation holds for a single round,

but is not necessarily true when considering a multiple matching

rounds. Different matchings influence the future positions of the

drivers and thus future utility. It might be possible that other strate-

gies position the drivers for very high utilities in subsequent rounds.

Since we do not assume any knowledge about future request loads,

we only study the accumulated utilities empirically.

5.2 Worst-Off Driver First (WDF)

While the Nearest Driver Fist strategy advantages the customers

by letting them choose the matches that bring them the best utility,

we also experiment with achieving equity for the drivers using a

heuristic that lets the drivers who are worst-off in terms of the

accumulated utility choose their preferred customers. More specifi-

cally, we define a priority list of available drivers determined by the

increasing accumulated utility. Every driver chooses the customer

to be matched with in the order determined by the priority list. We

additionally assume each driver chooses a request that brings them

the highest utility.

Interestingly, implementing this heuristic in a naive matter may

lead to a number of undesirable effects. First of all, if deserving

drivers are forced to choose a match in a given round, they might

end up worse-off than before. It is namely possible that all the

matches available in a given round bring a driver a negative utility,

which is possible when the driver’s location is very far away from

any of the requesting customers and and all the requested rides are

very short-distance. To overcome this caveat, we match a deserving

driver only if the utility of the match is positive. The pseudocode

for this algorithm is provided in the Reproducibility Supplement A.

5.3 Two-Sided Optimization

We consider the distribution of driver income and passenger waiting

time using an optimization mechanism where inequality levels for

drivers and passengers are controlled with a single parameter. The

abstract form of the formulation is as follows:

minimize

M
λ · inequalityD (M) + (1 − λ) · inequalityC (M)

subject to constraints ensuring a correct matching.

The real-valued parameter λ ∈ [0, 1] controls how much penalty

we add to the objective for inequality of each side. As a bound-

ary case, with λ = 1, we only explicitly minimize inequality for

the drivers, while ignoring the level of inequality among the cus-

tomers. With λ = 0, we only explicitly minimize inequality for the

customers, while ignoring the inequality among the drivers.

Note an interesting correspondence between this formulation

and the optimization problems commonly found in algorithmic fair-

ness literature. The problem of fair matching is explicitly two-sided.

Fairness in ranking [3] and recommendation [8] is often optimized

under constraints on utility. While utility is often measured per

task without taking into account returning consumers, utility con-

trol can also be seen as providing fairness for ranking consumers.

In the following subsections we instantiate the objective and the

constraints of the optimization problem.

5.3.1 Optimization objective.
While we might want to quantify inequality using the Generalized

Entropy index, directly optimizing for this objective is, however,

practically infeasible. Recall from Eq. 1 that computing GE requires

computing the mean over the population. GE in a given round is

thus not decomposable to factors dependent just on a single match

(or pairs of matches) between a customer and a driver, which rules

out integer linear or quadratic programming formulations.

Instead, we propose to approximate equality using the following

optimization objective: minimize the difference of the utilities of

drivers (customers) as compared to the maximum utility gained by

any driver (customer) up until the previous matching round:

I∑
i=1

J∑
j=1

λ ·

����max

i′
U t−1
D (i ′) −

(
U t−1
D (i) +Mt

i , j ·U
t
D (i, j)

)����
+ (1 − λ) ·

����max

j′
U t−1
C (j ′) −

(
U t−1
C (j) +Mt

i , j ·U
t
C (i, j)

)����
(2)

Proportional equality of the drivers can be approximated in a

similar way, replacing absolute utilities by utilities normalized by

the number of active rounds. Let

Tt (i) :=
t∑

k=1

Aki

be the number of rounds driverDi was active in the system up until

round t . The modified optimization objective tries to equalize the

normalized utilities of the drivers:

I∑
i=1

J∑
j=1

λ ·

�����max

i′

U t−1
D (i ′)

Tt−1(i ′)
−

(
U t−1
D (i)

Tt (i)
+Mt

i , j ·
U t
D (i, j)

Tt (i)

)�����
+ (1 − λ) ·

����max

j′
U t−1
C (j ′) −

(
U t−1
C (j) +Mt

i , j ·U
t
C (i, j)

)����
(3)

5.3.2 Constraints.
We need to introduce the following constraints to ensure the con-

struction of a syntactically correct and feasible matching:
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(c) Driver’s utility per active days.

Figure 2: Inequality distributions of total driver utility under nearest-driver-first and worst-off-driver-first policies. Each dot

in (c) represents a driver with her total active time after 30 days.

Matching variables are binary: Mt
i , j ∈ {0, 1}, ∀i , j

(4)

Match only and all requesting customers:

∑
i
Mt
i , j = Rtj , ∀j

(5)

Match only available drivers:

∑
j
Mt
i , j ≤ Ati , ∀i

(6)

Constraint 4 simply ensures that the values of the matrix M are

indicators for matchings. Not all matchings are feasible, however,

under the limitations imposed by the driver availability and the

customer requests.

Constraint 5 enforces the matching of only and all requesting

customers, and the following argument proves the correctness of

this proposition. If a customerCj makes a request in round t , Rtj = 1.

In this case, we require that

∑
i M

t
i , j = 1, and since Mt

i , j ∈ {0, 1},

there will be exactly one index i such that Mt
i , j = 1, denoting a

match betweenCj and Di . Reversely, ifCj does not make a request

in round t , Rtj = 0, and by a similar argument there will be no i

such that Mt
i , j = 1, denoting the lack of a match between Cj and

any of the drivers.

Constraint 6 ensures that only the drivers who are available in a

given round are matched, and the following argument proves the

correctness of this proposition. If a driver Di is active in round t ,
Ati = 1. For an active driver, we require that they are matched to at

most one customer in a given round, and thus there should exist

at most one j, for which Mt
i , j = 1. For drivers who get matched∑

j M
t
i , j = 1, and for drivers who do not get matched

∑
j M

t
i , j = 0,

both of which can be jointly captured by

∑
j M

t
i , j ≤ 1 = Ati . If a

driver Di is not active in round t , Ati = 0. There should exist no

index j for whichMt
i , j = 1, in which case also

∑
j M

t
i , j = 0 ≤ Ati .

5.3.3 Casting into an Integer Linear Program.
Under the specific conditions of the model and data we have at our

disposal, it is possible to simplify this optimization problem casting

it into an Integer Linear Program (ILP), and make it more efficient

by reducing the number of variablesM .

The first condition we leverage to simplify the formulation in

practice is that, for privacy reasons, the data does not contain pas-

senger IDs (deanonymization of such data would result in leaking

potentially sensitive location information; studies in this space of

similar datasets also do not have access to passenger information

[19].) We thus assume each customer is a unique individual and

do not amortize over customer history (all accumulated utilities

U t
C (j) = 0 for any customer Cj ). Thus, the inequality minimization

becomes:

���Mt
i , j ·U

t
C (i, j)

��� = ���U t
C (i, j)

��� · Mt
i , j . In each optimization

round, we also only consider the customers who make requests.

On the driver side, we also restrict the optimization only to

the drivers active in a given round. We can cast the optimization

problem as an ILP, if we sum over the matching variables multiplied

by a constant weight. We make the following observation: If we

introduce dummy requests of no utility (U t
D (i, j) = 0) such that in

each round each driver gets matched to exactly one request (real

or dummy), we can rewrite the objective for the drivers as:

I∑
i=1

J∑
j=1

λ ·

�����max

i′

U t−1
D (i ′)

Tt−1(i ′)
−

(
U t−1
D (i)

Tt (i)
+
U t
D (i, j)

Tt (i)

)����� ·Mt
i , j

This way, combined with the previously defined constraint, we are

minimizing the equality contributions from all the active drivers

(contributions from inactive drivers could not be changed in a given

round anyway), by having Mi , j = 1 exactly once for each driver

and exactly once for each customer (real or dummy).

6 EXPERIMENTAL RESULTS

In this section we analyze the performance of the ILP with Ob-

jectives 2 and 3, using λ = {0, 0.5, 1.0}. We denote the methods

optimizing for Objective 2 by ILP0, ILP05 and ILP1, and the meth-

ods optimizing for Objective 3 by ILPNorm0, ILPNorm05 and ILP-

Norm1, respectively. Results are shown in table 1.

6.1 Data

We describe the dataset and the preprocessing methods in the Re-

producibility Appendix A.1. The filtered dataset consists of 28k

matching rounds with a total of 1462 drivers and 231k job requests.

The average duration of a job is 14.39 rounds, which corresponds

to 22 minutes. The average distance from pickup location to the

destination of the customer is 8.89 km. The number of active rounds
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(b) Driver’s utility per active rounds ILP1 vsWDF.
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(c) Average waiting time of passengers over time.

Figure 3: Inequality development over time of driver utility and passenger waiting time.

for the drivers is 10420.39 which translates to 11 days of work, or

29 days of 8.9 working hours.

6.2 The Worst-off Driver First Strategy

We observed in Section 5.2 that naively implementing the WDF

strategy might lead to utility loss for drivers who are already worst-

off. To overcome this problem, we modify this strategy to assign

a job to a worst-off driver only if it leads to an increase in the dri-

ver’s total utility. Figures 2a and 2b show that, with the described

restriction, the WDF strategy results in equality of amortized to-

tal utility after one month. While at first glance this might look

promising, the details reveal a more complex situation when utility

is normalized by time drivers are active on the platform: figure 2c

shows the effective hourly rate of drivers at different amounts of

active periods. Under the WDF strategy longer working drivers are

punished by reduced rates over time, meaning that the longer a

driver stays active in the system, the less utility they earn per active

round. We therefore conclude that a fair matching strategy should

optimize for the driver hourly rate instead of the total amount of

income, as well as take the driver’s distance to the pick-up location

(customer utility) into account.

6.3 ILP: Optimizing Equality of Total Income

General performance. We observe that ILP achieves higher utility

for drivers and passengers simultaneously in all settings compared

to NDF. Evenwhen λ = 0, that is whenwe optimize only for equality

of passenger utility, ILP0 outperforms NDF in terms of driver utility

and passenger waiting time. This effect can be explained by the fact

that the driver and passenger utilities are partially correlated. We

do, however, see a slight decline in driver equality.

Interestingly, ILP05 and ILP1 outperform NDF not only in terms

of driver equality, but also in terms of utility for customers. This is

merely an artifact of the data in which drivers happen to become

positioned geographically closer to future customers. This effect

might not occur in general, and especially would not occur if the

starting positions of the drivers were fixed at each request.

ILP1 achieves higher equality of driver utility (13.1% increase

in the GE measure) and higher equality of passenger distance to

drivers (9.545% increase in the GE measure). This result suggests

that certain sequences of requests as well as driver and customer

positions might not necessarily incur a trade-off between passenger

utility and driver income equality.

Inequality over time. Figure 3a reveals another interesting behav-
ior of ILP. ILP05 and ILP1 achieve the minimum inequality faster

than ILP0 and NDF because, additionally the to passenger utility,

the driver equality is taken into account and maximized simulta-

neously. Note that the high inequality measure in the first three

days is due to the fact that many drivers have not been active yet

and therefore received a utility of zero while other drivers were

already assigned a job. After reaching a minimum, the inequality

slightly increases over time for ILP0 and NDF, because the number

of drivers who leave the system and are hence unavailable for the

rest of the matching sequence monotonically increases, while less

and less new drivers appear with zero received utility. Hence, the

inequality increases because passengers are matched with a smaller

set of drivers. For ILP05 and ILP1 we observe the same effects, but

with a steeper increase of the inequality measure over time.

There are a number of other factors possibly contributing to

this increasing trend in inequality. Figure 3c shows that both ILP05

and ILP1 distribute the increased distances to drivers in the first

rounds, yielding a lower average utility for the drivers (compare

this result with Figure 3a). If a driver goes offline in those initial

rounds, her received utility will be low compared to ILP1 and NDF.

We can, however, observe that ILP05 and ILP1 catch up to the other

mechanisms in utility per round which leads to a faster increase

of difference between offline and online drivers, which explains

the steeper increase of inequality. The increase of inequality might

however be an artifact of our dataset and its incorporated time limit.

If the algorithms ran unlimited, and drivers came online again, we

expect the inequality to lower again for ILP under all settings with

λ , 0. If drivers were to come online again during a second month,

the GEI would consequentially quickly converge to a lower value

for ILP05 and ILP1. We denote that ILP1 and ILP05 achieve a lower

total value of inequality than ILP0 or NDF.

Decreasing effective hourly rates under WDF strategy. Figure 3b
shows that the variability of driver utility for WDF and ILP1 follows

a chronological trend, that is, drivers who stay active for longer will

receive less utility per active round. ILP1, however, shows a higher
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- NDF WDF WDFNorm ILP 1.0 ILPNorm 1.0 ILP 0.5 ILPNorm 0.5 ILP 0.0

Driver Utility 1689738.428 993584.214 981251.588 1695494.19 1643690.085 1706300.168 1706726.529 1707337.862

Driver Utility vs. NDF — -41.199 % -41.929 % +0.341 % -2.725 % +0.980 % +1.005 % +1.042 %

Median Util. Driver 1650.591 1022.584 1023.937 1712.095 1162.488 1655.433 1688.046 1655.424

Median Util. Driver vs. NDF — -38.047 % -37.965 % +3.726 % -29.571 % +0.293 % +2.269 % +0.293 %

GE(2) Util. Drivers 0.137 0.001 0.042 0.119 0.369 0.134 0.133 0.139

GE(2) Util. Drivers vs. NDF — -99.592 % -69.096 % -13.137 % +135.369 % -2.493 % -3.066 % +1.611 %

GE(2) Util./Active Time Drivers 0.083 0.066 0.003 0.078 0.453 0.079 0.083 0.082

GE(2) Util./Active Time Drivers vs. NDF — -21.298 % -96.878 % -6.619 % +444.090 % -4.715 % -0.784 % -1.197 %

Passenger Dist. to Driver 365634.867 1060838.726 1073203.906 360751.646 412555.751 349941.933 349519.307 348907.974

Passenger Dist. to Driver vs. NDF — +190.136 % +193.518 % -1.336 % +12.833 % -4.292 % -4.408 % -4.575 %

Median Dist. to Driver Passengers 1.022 3.930 3.943 1.062 1.327 0.994 0.981 0.980

Median Dist. to Driver Passengers vs. NDF — +284.540 % +285.812 % +3.914 % +29.843 % -2.740 % -4.012% -4.110 %

GE(2) Dist. to Driver Passengers 0.580 0.236 0.243 0.525 0.423 0.565 0.577 0.580

GE(2) Dist. to Driver Passengers vs. NDF — -59.350 % -58.106 % -9.545 % -27.079 % -2.620 % -0.479 % -0.092 %

Table 1: Performance of all Matching-Mechanisms after 30 Days; Green values indicate a positive change vs. NDF, Red values

indicate a negative change vs. NDF

variance than WDF and the values seem to be upper-bounded.

These upper bounds can be explained as follows: if a driver is close

to reaching the current maximum utility, she will only be assigned

an additional job, if no other driver reduces the overall difference

to the current maximum more. Once most of the active drivers

have received high utility, ILP1 and ILP05 will match more distant

passengers to them in order to keep their utility close to the current

maximum.

While the WDF strategy does not show an increase of inequality

within our experiments, it will always match the worst-off driver

even if their resulting utility is very low. This can result in a severe

decline of driver utility per active round. Figure 3b and figure 3c

show these effects. We observe a strongly decreasing utility per

active round for the drivers as well as very high waiting time for

the passengers. On the upside, the inequality does not rise over

time.

6.4 ILP: Optimizing Equality of Hourly Income

In this section we analyze the mechanisms that aim for proportional

equality (Equation 3). Note that ILP0 is equal to ILPNorm0. We also

analyze a modified version of the WDF mechanism in which the

worst-off driver is the one with the lowest utility per active round.
We denote this heuristic by WDFNorm.

General performance. WDFNorm equalizes the utility per active

time of the drivers nearly perfectly as shown in Figure 4, even

though this comes with a high loss in the overall utility volume. Ta-

ble 1 shows that ILPNorm05 outperforms NDF in every computed

measure. Interestingly, even in comparison to ILP0, ILPNorm05

achieves almost equally good results for the passengers. Further-

more, ILPNorm05 decreases the inequality of the total utility among

drivers by 3%. However, ILPNorm1 underperforms in every mea-

sure.

Caveats of Optimizing for Normalized Utility. Figure 4 reveals

that drivers with an active time of nine days or less achieve a high

utility per active round through ILPNorm1, while drivers with

higher active times receive close to zero utility per active round.

This uncovers a challenge in our objective function which is a

consequence of a too high value ofmaxU t−1
D . Once a driver with
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Figure 4: Driver’s utility per active rounds ILPNorm vs

WDFNorm after 27840 iterations

high utility per active round goes offline,maxU t−1
D will stay this

high for the rest of the matching sequence. If a driver i1 with a

high active time competes with a driver i2 with low active time

for a customer j, ILPNorm1 will prefer the new driver most of

the times since

U t
D (i1, j)
Tt (i1)

<
U t
D (i2, j)
Tt (i2)

. In consequence the objective

can be minimized easier by matching driver i2. This effect grows
over time because it is increasingly advantageous for ILPNorm1 to

match customers with even more distant drivers. We observed that

a possible way to bypass this problem is to modify the objective

to use the maximum received utility per active round of a driver

who is active and free in the current matching round (instead of the

global maximum). This prevents maxU t−1
D to get stuck on a high

and unreachable level so that drivers with longer active times have

a better chance to catch up in utility.

ILPNorm05 is, however, not affected by this problem because

of the passenger side of the objective. The positive results come

from the longer active drivers catching up through matches which

are decided by the passenger side of the objective. Fortunately,

the driver side of the objective lowers the variance of utility per

active round. Even if maxU t−1
D is still very high, drivers with longer

active time receive higher priority in the matches compared to

ILPNorm1. Figure 4 reveals the positive results of both effects: Most

of the drivers receive a higher utility per active round compared to
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WDFNorm and ILPNorm1 while the drivers with low active time

are not advantaged anymore.

6.5 Limitations

We would like to explicitly acknowledge several limitations of

the study performed in this paper. First of all, there are a number

of simplifying assumptions that our model makes. We simulated

driver positions after reassigning the matchings, and we assumed

that each ride takes a fixed amount of time when determining

driver availability. Further limitations involve the data in which,

for privacy reasons, we did not have access to passenger IDs and

assumed each request comes from a unique individual. In terms

of efficiency, the high runtime of the optimization models would

be a bottleneck when implementing a fair matching strategy in

practice. Finally, it is important to acknowledge that our work does

not look into behavioral aspects of fair matching, and in practice it

is possible that passengers and drivers would decline assignments

that violate their individual time or distance constraints.

7 CONCLUSION

This paper explored the problem of two-sided fairness for produc-

ers and consumers in a sharing economy platform. Our case study

specifically focused on ride-hailing platforms and the equitable

income distributions as fairness criteria for the drivers, and an

equal distribution of the resulting increased waiting times for the

customers. We have explored the space of various mechanisms for

achieving these fairness goals. We showed in particular that an in-

tuitive heuristic letting the worst-off drivers choose their matches

first, while helping achieve equality, can lead to a decrease in the

average and median utility gained by the drivers. We experimented

with an optimization problem balancing equality of both consumers

and producers, which led to an increase in equality while preserving

the utility volumes. We also showed that implementing an opti-

mization objective which is a direct translation of equality goals in

practice still requires a very careful thought about initialization of

utility values.

Our hope is that this study will add to the discussions about

redesigning on-demand platforms to take the well-being of the

providers into account. While such transformation would be a

long-term process because of the complexity of the underlying

problems (ranging from exploitation of the providers in unfair

wage schemes [14] all the way to customer biases creeping in the

provider ratings and influencing their job assignments [16, 20]),

we believe that the question of equitable income distributions is

pertinent in the constantly growing sharing economy.

The goal of implementing this new paradigm in practice opens

up a number of fascinating research problems. First, to be able

to perform matchings real-time, we need scalable algorithms for

matching with fairness goals. Second, research into platform users’

perceptions and needs is necessary to adopt a new paradigm with-

out major disruptions to platforms’ operations. Last but not least,

more research is needed to understand the complex social impacts

of the on-demand platforms.
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A SUPPLEMENT ON REPRODUCIBILITY

A.1 Data Preparation and Cleaning

A.1.1 Data Description.
We perform our experiments on a dataset from a taxi company in a

large Asian city. The dataset consists of a daily logfile and jobfile
over the course of twenty nine consecutive days. A daily jobfile

consists of the following dimensions: Timestamp, Taxi Id, Driver
Id, Latitude of the Taxi, Longitude of the Taxi, Taxi Status. The Taxi
Status values BUSY, BREAK, OFFLINE and POWEROFF indicate that

a taxi is currently not available and not serving a customer. A taxi

with the status FREE is available to receive a job. Having received a

job where the passenger is not at the exact same position as the taxi,

is indicated by the status ONCALL, meaning that the taxi is on its

way to the pickup-location of the passenger. The status ARRIVED,
indicates arrival at the requested pickup-location, remaining such

as long as the taxi waiting for the passenger. The status POB (Person

on Board) means that the taxi is currently carrying a passenger.

Arriving at the passenger destination will usually change the taxi

status to PAYMENT. The taxi company creates one log every 30

seconds for every driver who is currently not assigned to a job

(ONCALL, ARRIVED, POB, PAYMENT ). For every driver who is

currently assigned to job, logs are created every 90 seconds.

A.1.2 Data Cleaning.
The ride process can be described by the changing values of the

Taxi Status field. However, in some cases the logs are incomplete

or inconsistent. We observed that one of the most common status

sequences related to jobs is FREE, POB,..., FREE, suggesting that

the drivers do not report intermediate changes of their status. In

order to retrieve the actual jobs from the logfile, we applied a

filter to remove the entries with missing or defective data, then

retrieved the first appearance of each taxi id combined with its

initial position. Because of the different time intervals of the logs

we chose a 90 second matching round interval. Every taxi that is

online during at least one log within the interval is considered

active in the corresponding matching round. In conclusion one day

has 960 matching rounds.

A.1.3 Retrieving Jobs.
Even though we had the jobfile of the matchings made by the

taxi company, we had to retrieve the job requests from the jobfile

because there was no information about the destination of the

passengers, position of the taxi during the time of the request and

no information on the drop-off time in the jobfile. Mapping the

jobs of the jobfile to the logs in the logfile proved difficult since the

request timestamp and the time when the matching was made were

not exactly the time when a status of a taxi in the logfile changed.

Nevertheless we could use the jobfile to retrieve the matching

algorithm of the company by comparing taxi positions at request

time. Since we could only map very few jobs of the jobfile to logs

in the logfile, we reconstructed the taxi jobs through the taxi status

field of the logfile. Therefore we considered status sequences of

taxis as valid if they represent a possible job process. We had to

apply an additional filter at this point because some of the resulting

jobs have a very short duration, or the necessary speed of the car is

unrealistic. We filtered the jobs for a minimum ride length of 10.5

minutes and a maximum ride length of two hours and a minimum

speed of the taxi of at least 20 kilometers (air-line distance) per

hour but not faster than 30 kilometers per hour. We chose these

values for the filter, since the resulting number of jobs are about

the same as in the original jobfile.

A.2 Algorithm: Nearest Driver First

We implemented the Nearest Driver First algorithm as seen in

the pseudocode 1. The methods getFreeDriversOfRound() returns
all drivers that are free and active in a round, where all expiring

matches of the rounds before are considered too and analogous

getCustomersOfRound(). The list of customers also has to be shuffled

especially if customers occur more than one time. However one

has to pay attention to the following details for implementing the

algorithm with another dataset. The location data of the drivers in

our dataset was very precise so that for each passenger the nearest

driver was unambiguous. If there exist multiple nearest drivers for

one passenger, we suggest including a random choice of the driver

in the method getNearestDriver().

Algorithm 1: Nearest Driver First

INPUT: Drivers D, Customers C , Rounds k ;
OUTPUT: List of sets of tuples (d, c),M ;

M ← {};

activeDrivers ← {};

activeCustomers ← {};

for i := 1 to k do

activeDrivers ← дetFreeDriversO f Round(i,D,M);

activeCustomers ← дetCustomersO f Round(i,C);

matchinд← {};

for c ∈ activeCustomers do
d ← дetNearestDriver (c,activeDrivers);

d .position ← c .destination;

matchinд←matchinд ∪ (d, c);

end

M ← M ∪matchinд;

end

returnM ;

A.3 Algorithm: Worst-Off Driver First

As in the implementation of the Nearest Driver First algorithm, the

exact implementation of Worst-Off Driver First is dependent on

the accuracy of the location, more accurately, on the precision of

the utility function for the drivers in order to get a distinct ranking

of the drivers. Especially during the first rounds of the matching

sequence where all drivers have a received utility of 0. The function

getWorstOffDriver() has to be implemented with a random choice for

all drivers with the same utility. If the utility function has possible

negative values, one has to give the drivers the choice to drive. If not,
the algorithm can be caught in a downward spiral for some drivers.

This can happen if even the first preference of a driver provides

negative utility and the matching would make the worst-off driver

even more worse off.

A.4 Algorithm: Linear Program

Since maxU t−1
D and maxU t−1

C are not defined for t = 0, one has to

simulate them for the very first matching. Additionaly we observed

that ILP1 does not perform well if we start with maxU t−1
D = 0

because the mechanism tries to keep the initial equality. One has
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Algorithm 2: Worst-Off Driver First

INPUT: Drivers D, Customers C , Rounds k ;
OUTPUT: List of sets of tuples (d, c),M ;

M ← {};

activeDrivers ← {};

activeCustomers ← {};

utilities ← {};

for d ∈ D do

utilities .put(d, 0);

end

for i := 1 to k do

activeDrivers ← дetFreeDriversO f Round(i,D,M);

activeCustomers ← дetCustomersO f Round(i,C);

matchinд← {};

for j := 1 to activeDrivers .lenдth do

d ← дetWorstO f f Driver (utilities,activeDrivers);

p ← d .дetFirstPre f erence(activeCustomers);

d .position ← c .destination;

matchinд←matchinд ∪ (d, c);

utilities .put(d,utilities .дet(d)+d .дetU tilityO f (c));

end

M ← M ∪matchinд;

end

returnM ;

to create an initial level of entropy to start the dynamics of the

mechanisms. The best way to do so is to set U −1D and U −1C high

for the first round only. The initial positions of the drivers match

exactly the positions of the first appearing passengers because we

retrieved the jobs from the logfile of the drivers. However, since we

did not track the movement of the drivers between the jobs, this

effect lasts only for the first matches. Additionally setting a high

starting value will simulate an ongoing taxi business. The drivers

who started the file on a job will be matched with them. Resulting

distance to the driver of zero creates desirable optimization goals

for both sides.

A.5 Technical Details

We performed our experiments on a machine with the following

technical data:

• CPU: 2x Intel Xeon E5-2667 v2

• Memory: 256GB DDR3, 1866 MHz, ECC

• OS: 64bit Linux distribution based on Debian

We implemented all data processing infrastructure and algorithms

in Java with SDK version 1.8 using the Java interface of the Gurobi

Software
2
version 7.0.1 for solving the ILP.

2
http://www.gurobi.com
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