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ABSTRACT. Increasingly, discrimination by algorithms is perceived as a societal and legal prob-
lem. As a response, a number of criteria for implementing algorithmic fairness in machine learning
have been developed in the literature. This paper proposes the Continuous Fairness Algorithm
(CFAθ ) which enables a continuous interpolation between different fairness definitions. More
specifically, we make three main contributions to the existing literature. First, our approach allows
the decision maker to continuously vary between specific concepts of individual and group fairness.
As a consequence, the algorithm enables the decision maker to adopt intermediate “worldviews”
on the degree of discrimination encoded in algorithmic processes, adding nuance to the extreme
cases of “we’re all equal” (WAE) and “what you see is what you get” (WYSIWYG) proposed so
far in the literature. Second, we use optimal transport theory, and specifically the concept of the
barycenter, to maximize decision maker utility under the chosen fairness constraints. Third, the
algorithm is able to handle cases of intersectionality, i.e., of multi-dimensional discrimination of
certain groups on grounds of several criteria. We discuss three main examples (credit applications;
college admissions; insurance contracts) and map out the legal and policy implications of our ap-
proach. The explicit formalization of the trade-off between individual and group fairness allows
this post-processing approach to be tailored to different situational contexts in which one or the
other fairness criterion may take precedence. Finally, we evaluate our model experimentally.

1. INTRODUCTION

Suppose a decision needs to be made for a large number of individuals that fall into different
groups. We call the agent or institution taking this decision the decision maker. As a motivating
example, imagine the decision maker to be a provider of credit scores which are subsequently used
by financial institutions to decide on credit applications. The score indicates whether an applicant
should be made a credit offer at all, and if so under what conditions. There is ample evidence,
however, which suggests that credit scores are ridden with bias, unfairly discriminating against
minorities (Pasquale 2015; Rothmann et al. 2014; Hurley and Adebayo 2016). Simultaneously,
providers of credit scores growingly harness machine learning technology to predict credit risk
for individuals (cf. Fuster et al. 2018; German Federal Ministry of Justice 2018; Hurley and
Adebayo 2016). In fact, in many other scenarios involving a large number of subjects and data,
decision makers increasingly employ algorithmic methods to reach their decisions. Other high-
stakes settings in which algorithmic decision making is increasingly prevalent include hiring or
insurance decisions, as we discuss in more detail below, or criminal justice decisions (see Berk
et al., 2018). We therefore seek to establish a novel framework that subjects the decision maker
to fairness constraints which can be operationalized in a setting of algorithmic decision making;1

these constraints facilitate a trade-off between specific concepts of individual and group fairness
(thereby minimizing bias in algorithmic decision making) while preserving as much utility for the
decision maker as possible.

1 We would like to point out that our framework also covers cases of non-algorithmic decision making and thus
applies widely to decisions implicating fairness.
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For each individual in our credit scoring example, certain observable data is available, like
credit history, degree certificates, scores quantitatively reflecting an interviewer’s judgment, etc.
Part of this data might have been collected or processed through procedures biased against certain
groups of individuals. Indeed, evidence is mounting that bias generally haunts algorithmic deci-
sion procedures, particularly those based on machine learning methods (cf. Barocas and Selbst
2016; Reuters 2018). Moreover, even if the data was handled correctly, it might allow for in-
ferences about an individual’s ethnicity, gender, or other criteria about membership in legally
protected groups. In other words, in a number of settings, full disclosure of the observable data to
the decision maker is likely to result in unfair decisions.

Instead, in our framework an impartial agent, like a regulatory body, will transform the observ-
able “raw data” into a fair representation of the data (cf. Zemel et al. 2013 for the terminology),
which can then be used by the decision maker to take its decision. For instance, if the observable
data is biased against one group of individuals, the data would be “corrected” by being transported
to a fair representation that mitigates, or even fully removes, this bias.

The map from an individual’s observable data to the fair representation is the main subject
of this work. It should satisfy, as closely as possible, a number of requirements reflecting the
“fairness” of the process while maintaining decision maker utility to a maximum:

(1) Individual fairness: Similar observable data should be mapped to similar fair data.
(2) Group fairness: The fair data of an individual should not allow for any inference on the

individual’s group membership (statistical parity).
(3) Monotonicity: If one individual scores better in the raw data, then they should also score

better, or equally well, in the fair data.
(4) Decision maker utility: The fair data should conceal as little information as possible to the

decision maker.

These requirements will be refined, and defined more rigorously, below (see Section 2). They
have been well-studied except for monotonicity, and it is known that they cannot all be perfectly
satisfied at the same time (Friedler et al. 2016); this is a general problem in fairness constraints in
algorithmic decision making (Chouldechova 2017; Kleinberg et al. 2016). For instance, if groups
have different raw score distributions, it will be necessary to attribute different fair scores to two
individuals with similar raw scores if they belong to different groups in order to achieve group
fairness; however, this will violate monotonicity and individual fairness. If, as will typically be
the case, different groups exhibit different statistics in the raw data, then indeed the only way to
satisfy requirements (1)–(3) simultaneously is to assign the same fair score to every individual (cf.
Kleinberg et al. 2016). This, of course, would neither be “fair” in any meaningful sense, nor would
it be of any use to the decision maker, as they would be completely “blindfolded” in making their
decision. Correspondingly, requirement (4) would be violated to an extreme extent in this case.

Our general discussion is close to the works of Dwork et al. (2012) and of Feldman et al.
(2015). In contrast to these and other fairness approaches, however, our model contains a stringent
mathematical proof of optimality. As the model will show in greater detail, we introduce a novel
framework which greatly facilitates the mathematical analysis of the “raw-to-fair” map. One of
the main novelties of this paper is thus to work in a continuous rather than a discrete setting, in
the Euclidean space Rn. We would like to stress at the outset that our framework is continuous in
a dual sense. First, our probability measures, i.e., the distributions of (raw and fair) scores across
groups, are continuous (absolutely continuous with respect to Lebesgue measure, to be precise).
This not only allows for highly fine-grained scoring, but it is also a mathematical prerequisite
for the existence of a unique optimal transport map that we will use in our model to maximize
decision maker utility. The choice of a continuous probability measure is justified as long as the
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number of individuals in question is sufficiently large, and as long as it is unlikely that many of
the individuals have exactly the same raw score.2 Continuous distributions are frequently used
in economics (Romei and Ruggieri 2014, p. 589) and admit a richer mathematical theory. In this
paper, specifically, we will exploit some elements of the mathematical theory of optimal transport.
Working with continuous distributions is generally not a significant restriction, as every continuous
distribution can be arbitrarily approximated by discrete ones in Wasserstein distance (i.e. in the
weak topology), and vice versa.

Second, another type of continuity resides in the possibility to variably choose a parameter, θ ,
that allows us to skew the model more towards individual or toward group fairness, as conditions
warrant. Friedler et al. (2016) consider not only the observable data and the decision finally made
by the decision maker, but also a so-called construct space, which can be thought to contain the
“actual” or “true” properties of every individual. The (possibly inaccurate or biased) evaluation
of the “true” data is then modelled by a map from construct space to observable space. Con-
struct space and the construct-to-observable map are, by definition, not measurable or observable
in any way. Rather, the relation between construct and observable space must be postulated in an
axiomatic fashion. To this end, the authors of Friedler et al. (2016) propose two extreme “world-
views”: WAE (“we’re all equal”) and WYSIWYG (“what you see is what you get”). In the first
case, it is assumed that any differences between groups in the distribution of the raw data in the
observed space are due to discrimination, incorrect data handling, or other exogenous factors, and
that these differences should therefore not be visible in construct space; insofar as it is relevant for
the decision, different groups are assumed to have the same ”true” distributions of scores (which
differs from the observable distributions). In the second case, the assumption is that the observable
data truly reflects the properties of the individuals and can thus be immediately used for decision
making. In this worldview, effects of bias or inaccurate collection of data are either flatly denied
or tolerated. This assumption therefore collapses the distinction between construct and observed
space. Both assumptions, however, are extreme cases: either groups are postulated to be perfectly
equal in construct space, or data in the observed space is assumed to be perfectly correct.

A main contribution of this paper is to add nuance to these distinct worldviews. We suggest a
framework that allows to continuously interpolate between WAE and WYSIWYG. Indeed, in the
mathematical theory of optimal transport, the technique of displacement interpolation is used to
continuously move from one probability distribution to another in a particularly natural way, and
we apply this tool in the context of fair representations. To this end, we introduce a parameter, θ ,
that allows us to continuously move from WAE to WYSIWYG. As we will see, this implies that
we can equally move from a maximal fulfillment of individual (WYSIWYG: θ = 0) to a maximal
fulfillment of group fairness (WAE: θ = 1). The resulting Continuous Fairness Algorithm (CFAθ )
allows us to formalize the trade-off between these fairness concepts, and therefore to adapt the
framework on a case-by-case basis to different decision making contexts in which different fairness
constraints may be normatively desirable (on this desideratum, see Binns 2018, p. 6-7). We would
like to stress that our model is able to guarantee monotonicity within groups, but not for members
belonging to different groups; this is also the source of the violation of individual fairness in our

2 In particular this requires that the raw data contains sufficiently fine degrees of evaluation. If this is granted,
then adding some stochastic noise to the evaluation of the raw data will remove undesired “concentration” effects, if
necessary.
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transportation exercise. Furthermore, since our model operates with a continuous distribution, the
need for arbitrary randomization in order to achieve a fair distribution is minimized.3

Quite obviously, one key question for the construction of a fair representation is the choice
of the target representation for θ = 1: among all possible target measures, one ought to find
the one that optimizes individual fairness and decision maker utility. Indeed, the requirement,
stemming from the desire to achieve statistical parity, that all the raw score distributions of the
different groups be mapped onto one single representation (in this extreme case), does not say
anything about what this distribution should look like. Dwork et al. (2012, p. 221) choose the
distribution of the privileged group as the target distribution. By contrast, we show that there is
a potentially more convincing target distribution which occupies a “middle ground” between the
distributions of all the different groups (the so-called barycenter with respect to Wasserstein-2
distance4). Choosing the barycenter as the target distribution has two important advantages: first,
it does not impose the distribution of one “privileged” or majority group onto the other groups.
Second, it is the distribution that is closest to all the raw distributions in a least square sense;
therefore, it preserves decision maker utility to a maximum if we use optimal transport theory to
map all raw distributions onto the barycenter. The existence of such an intermediate distribution,
the barycenter, is mathematically highly nontrivial and was only proved in 2011 by Agueh and
Carlier (2011) under certain assumptions that, fortunately, are plausible for many scenarios of
algorithmic decision making.5

The approach that is probably closest to ours is Feldman et al. (2015, p. 264) (see also the
discussion in Section 4). In contrast to their paper, which uses a ”median” distribution (i.e. the
barycenter in the Wasserstein-1 metric), our approach introduces the barycenter in Wasserstein-2
(which operates with the notion of least squares in Wasserstein-2 distance), and uses the unique
optimal transport map from raw to fair scores. Quadratic cost and distance functions seem plausi-
ble if one assumes that the utility of output data declines ever more sharply (and not only linearly)
the more it is removed from a sufficiently precise approximation of the truth; in other words, if
the distance between an output and ground truth becomes too large, the data is almost of no use to
the decision maker any more. This seems realistic particularly when important differential conse-
quences are attached to different outputs (as in our examples); arguably, it is only in such cases of
important distinctions that a decision maker will resort to an algorithmic model in the first place.
The barycenter allows us not only to maximize decision maker utility under fairness constraints,
but also to vary between different fairness measures (individual vs. group/WYSIWYG vs. WAE),
depending on the concrete decision-making framework our algorithm is applied to. Further impor-
tant differences between our approach and the one adopted in Feldman et al. (2015) are that we are
able to handle high-dimensional raw scores; and cases of intersectionality (see next paragraph).

To summarize, our CFAθ has a number of advantageous features, but also some limitations.
Concerning the advantages, first, in the WAE case (θ = 1), group fairness is fulfilled as well as
within-group monotonicity. Second, individual fairness and decision maker utility are optimized
by the choice of the barycenter as the target distribution, and the optimal transport toward it.
Third, the possibility of choosing θyields substantial flexibility for the decision maker. Hence, our

3 This is due to the fact that a necessary precondition for the need to randomize is that different individuals have
exactly the same fair score; this is excluded in a continuous setting, and can be neglected in the discrete setting if the
evaluation procedure is sufficiently fine-grained, see the discussion above.

4 In the one-dimensional case, a kind of barycenter has been used by Feldman et al. (2015), but with respect to the
Wasserstein-1 distance.

5 These conditions include absolute continuity of the raw distribution, which can be arbitrarily approximated by
discrete distributions in Wasserstein space, as noted above; and a quadratic cost (or utility) function, a condition that
can be fulfilled by initially transforming the utility function of the decision maker appropriately.
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model allows to implement any intermediate worldview the decision maker may have. It does not
impose a specific fairness constraint. The decision maker may choose θ such, for example, that
the resulting distribution does not correspond to full group fairness, but still fulfills the so-called
80 percent rule, an important threshold for US disparate impact doctrine (EEOC 2015, Section
4 D.; Barocas and Selbst 2016, p. 701 et seq.) that is increasingly gaining traction in EU anti-
discrimination law, too. It requires that the probability of a member of a disprivileged group being
positively labeled is at least 80 percent of the respective probability of a member of the privileged
group (see Feldman et al. 2015; Zafar et al. 2017). Hence, θ can be consciously chosen to force
compliance with existing anti-discrimination legislation. As the discussion of the legal and policy
implications of our model shows, the choice of θ is a deeply normative one and can be adapted to
different situations in which individual or rather group fairness should be the primary goal. Fourth,
being a post-processing approach, our model can be applied to any machine learning model and
is not constrained to specific types (such as linear models). Even more importantly, this implies
that the most efficient predictor can be chosen, only to be repaired if issues of discrimination arise,
an issue stressed by Kleinberg et al. (2018). This is particularly relevant when, as in the credit
scoring setting, an institution (the bank) receives scores from a third party (the scorer, e.g., FICO)
without having access to the training data and the model. The institution can apply our algorithm
to the outcome distribution regardless of how it was learned. Fifth, from an economic viewpoint,
quadratic cost functions are the best choice, particularly in credit scoring settings (see Fuster et al.
2018, p. 7). Sixth, we are able to handle the problem of intersectionality, i.e. the phenomenon that
an individual may belong to several (protected) groups at the same time. As a recent judgment
by the Court of Justice of the European Union has shown,6 intersectionality presents a pressing
problem in real-life decisions. As mentioned, in our approach to it, in contrast to Dwork et al.
(2012), we do not move the data distribution of a discriminated group to that of the privileged one,
but rather we transport the distributions of all groups to respective intermediate representations that
are chosen by displacement interpolation (the θ score). Importantly, we may choose θ differently
for different groups; this allows us to treat particularly disadvantaged groups (for example those
that fulfill several protected criteria at the same time) ”fairer” (with respect to group fairness) than
other ones, if so desired.

This leads us to the first of two important limitations that would like to stress. First, if a gener-
ally disadvantaged group performs exceptionally well (better than the barycenter) in one setting,
attaching a high θ value to that group removes part of this unexpected advantage (by moving the
group closer to the – unexpectedly worse – barycenter). Therefore, the setting of the values should
always be combined with a (at least superficial) performance evaluation of the respective groups
in the raw scores. Second, as mentioned before, our model does not work well with groups that
are small or have little variance because they depart too far from the continuity assumption. As
a consequence, while in mathematical theory, it may guarantee, for a certain θ value, a certain
percentage of members of the specific protected group in the top k positions (like Zehlike et al.
2017), this may not be the case in real-world implementations if group sizes are too small. This
will be explored further in the data-driven experiments.

Importantly, to reiterate, in all of these data corrections by the CFAθ , we take the raw score as a
given output of a prior learning task; therefore, the full force of machine learning can be unleashed
to calculate the raw score which is only transformed into a fair score after its elaboration. While
being a stand-alone procedure, our approach may nevertheless be fruitfully complemented by
fairness or data collection/quality constraints applied to the calculation of the raw score itself (see
below, Section 4).

6 CJEU case C-443/15 Parris ECLI:EU:C:2016:897.
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The remainder of the paper is organized as follows: Section 2 introduces the mathematical
model and establishes its fundamental optimality properties. Readers unfamiliar with mathemati-
cal notation may jump right to Section 3 which discusses a number of examples. Section 4 places
the model within the broader framework of related work. Section 5 offers detailed legal and policy
implications. Section 6 contains a data-driven evaluation. Section 7 concludes.

2. THE MODEL

Let X be a set of individuals that may have certain traits indexed by 1, . . . ,N. We are given
a group membership map g : X → {0;1}N whose i-th component indicates whether or not an
individual carries trait number i. This induces a partition of X via

X =
⋃

k∈{0;1}N

g−1(k)

into at most 2N groups Xk := g−1(k) (note that some of these could be empty). Let us call the
number of (non-empty) groups G.

Various data may be collected from individuals in the process of decision-making. This includes
qualitative data such as personal interviews, expert opinions, letters of motivation, etc. Obviously,
it should not be the objective of an abstract theory of fairness to design a map from this data to
a quantitative ranking that reflects the decision maker’s preferences. Rather, we assume such a
map as given, and therefore our starting point is a score function S : X → Rn. The score, which
may be composed of n partial scores for different categories, is assumed to express the decision
maker’s utility function in the sense that if the decision maker had the full observable data at their
disposal, then they would always prefer an individual with a higher score in each category to one
with a lower one.7

The restrictions of S to Xk are denoted Sk. On Rn, we introduce probability measures8
µ and

{µk}k=1,...,G that encode the score distribution within the entire set of individuals, and in the k-th
group, respectively. This means that µ(B) is the proportion of individuals with a score contained
in a subset B ⊂ Rn, and likewise µk(B) denotes the proportion of individuals with score in B in
the k-th group. If we index the individuals themselves by a vector in Rn, i.e. X = Rn, then we can
write

wk := |Xk|= |g−1(k)|

for the proportion of members of group k in the total population X , and

µk = dxn ◦S−1
k .

where dxn is the Lebesgue measure (i.e., the Euclidean volume, or, in case n = 1, the length)9

Accordingly, we have

µ = dxn ◦S−1 =
G

∑
k=1

wkµk.

Our decisive continuity assumption can be stated as follows:

7 In many cases, n = 1 may be sufficient. Indeed, in most real-life applications, at some point all the information
about the individuals must be brought into a linear ordering.

8 We use the term “probability measure” in the sense of “normed measure”; no randomness is insinuated by this
terminology.

9The pullback measure dxn◦S−1
k is defined by dxn◦S−1

k (B) := dxn({x∈Rn : Sk(x)∈B}), which gives the proportion
of individuals whose score lies in the set B.
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Assumption A1. The measures µ and µk, k = 1, . . . ,G, are absolutely continuous with respect
to Lebesgue measure and have finite variance, with densities f ∈ L1(Rn) and fk ∈ L1(Rn).

The fair representations for each group will be maps Tk from Rn to Rn. They transform a “raw
score” into a “fair score” for group k. The resulting fair score for an individual x ∈ Xk is then given
by Tk(S(x)). The raw-to-fair map Tk will transport the measure µk to the pushforward measure

νk = µk ◦T−1
k (2.1)

representing the “fair score distribution” for group k.
We will ask the converse question: Given a target distribution νk, how can we choose Tk so that

νk = µk ◦T−1
k ? Any such map Tk is called a transport map from µk to νk. In general, there are

many such transport maps. In the sequel we will describe how to choose νk and corresponding
transport maps Tk in order to guarantee a maximal amount of fairness in the sense of requirements
(1)–(4), using an algorithm which we call (CFAθ ). Once these data have been constructed, the
decision maker will be presented the distribution

ν̄ :=
G

∑
k=1

wkνk

and will make a decision based on this distribution; an individual x ∈ Xk will thus be classified
through their fair score Tk(S(x)).

We first need to impose target distributions νk. To this end, let us discuss the extreme world-
views WYSIWYG and WAE, which will form the endpoints of our interpolation, within our
model:

WYSIWYG. When the “raw” score is deemed a true and fair representation of reality, nothing
needs to be done, hence we set νk = µk for all k = 1, . . . ,G (thereby maximising decision maker
utility), and accordingly ν = µ . Monotonicity then forces Tk = id for all k, thus optimising indi-
vidual fairness at the same time. Of course, if µk are different, then group fairness is violated.

WAE. Under the hypothesis that any differences between the µk emerge solely from undesired
exogenous factors, such as bias, and should be removed, there should exist a single target distri-
bution ν independent of k so that Tk transports µk to ν . This produces statistical parity, hence
group fairness is optimised, whereas the other three requirements will typically be violated. The
problem is then to find the common fair distribution ν and the transport maps Tk minimising these
violations.

Definition 2.1 (Optimal transport map). Let µ,ν be two probability measures on Rn with finite
variance. An optimal transport map is a transport map between µ and ν that minimises the cost
functional

C(µ,ν ,T ) :=
∫
Rn
|x−T (x)|2dµ(x) (2.2)

among all transport maps from µ to ν .

In general, there need not exist any transport map between two probability measures.10 If there
exists a unique optimal transport map T between µ and ν however, then the so-called Wasserstein
distance between µ and ν is given by

W2(µ,ν) :=C(µ,ν ,T )1/2. (2.3)

10 This is typically the case for discrete measures, so that the notion of transport map needs to be relaxed to transport
plan. In the context of algorithmic fairness, this leads to the necessity of randomisation, as in Dwork et al. (2012).



8 MEIKE ZEHLIKE, PHILIPP HACKER, AND EMIL WIEDEMANN

The Wasserstein distance forms a metric on the space of all probability measures on Rn.
Other cost functions than | · |2 can be used, but the quadratic cost function has particularly

nice properties and appears most appropriate in view of the applications we are interested in. The
following theorem is a seminal result of Brenier (1987, 1991) (see also Theorem 1.26 in Ambrosio
and Gigli 2013):

Theorem 2.2. Let µ,ν be probability measures on Rn with finite variance. If µ is absolutely con-
tinuous with respect to Lebesgue measure (cf. Assumption A1), then there exists a unique optimal
transport map T between µ and ν , which is cyclically monotone, i.e.

(x− y) · (T (x)−T (y))≥ 0 for all x,y ∈ Rn.

Note that cyclic monotonicity coincides with the usual notion of monotonicity in the case n = 1.

Definition 2.3 (Displacement interpolation, cf. Remark 2.13 in Ambrosio and Gigli (2013)).
Let µ,ν be two probability measures on Rn that admit a unique optimal transport map T . The
displacement interpolation between µ and ν is a one-parameter family [0,1] 3 θ 7→ µθ defined as

µ
θ = µ ◦ (T θ )−1,

where the map T θ : Rn→ Rn is given by T θ = (1−θ)Id +θT .

Clearly, µ0 = µ and µ1 = ν , and it is known that the curve {µθ}θ∈[0,1] is the unique geodesic
with respect to the Wasserstein distance connecting µ and ν .

We will call θ the group fairness parameter. It is a fundamental modelling parameter that
allows to choose any worldview between WYSIWYG and WAE.

As a final tool, we need the notion of barycenter of a family {µk}1,...,G with corresponding
weights {wk}1,...,G:

Theorem 2.4 (Barycenter in Wasserstein space (Agueh and Carlier (2011))). Let {µk}1,...,G

be a family of probability measures satisfying Assumption A1, and let {wk}k=1,...,G be positive
weights with ∑

G
k=1 wk = 1. Then there exists a unique probability measure ν on Rn that minimizes

the functional

ν 7→
G

∑
k=1

wkW 2
2 (µk,ν).

This measure is called the barycenter of {µk}1,...,G with weights {wk}1,...,G.

The term “barycenter” is motivated by analogy with the Euclidean case, where the center of
mass of points xk with weights wk is precisely the least square approximation of these weighted
points, i.e. the minimiser of the expression ∑k wk|x− xk|2. In the special case of two groups
with score distributions µ1,µ2 and weights w1,w2, respectively, the barycenter is given by the
displacement interpolation11:

ν = µ1 ◦ (T w2)−1,

where T is the optimal transport map between µ1 and µ2 and T w1 is defined as in Definition 2.3. We
will need some elementary and well-known properties of the barycenter, which are consequences
of the shift invariance of Wasserstein distance (we assume from now on that every µk satisfies
Assumption A1):

11Recall the map T θ is defined in Definition 2.3.
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Lemma 2.5. Let µ be a probability measure on Rn, then the translation of µ by a vector z ∈ Rn

is defined as

νz(B) = ν(B− z)

for any measurable B⊂ Rn. It holds that

i) If ν is the barycenter of measures {µk} with weights {wk}, k = 1, . . . ,G, then the barycen-
ter of the translations {(µk)zk} with the same weights is given by νz̄, where z̄ = ∑

G
k=1 wkzk.

ii) If T is the optimal transport map from µ to ν , then T +z is the optimal transport map from
µ to νz.

iii) The barycenter of measures with zero expectation has itself zero expectation.

Proof. We denote the expectation of a probability measure by E. i) Suppose this were not the case,
then there would exist another probability measure λ on Rn such that

G

∑
k=1

wkW 2
2 ((µk)zk ,λ )<

G

∑
k=1

wkW 2
2 ((µk)zk ,νz̄).

Let Tk be the optimal transport map from µk to ν (whose existence is guaranteed by Proposition
3.8 in Agueh and Carlier 2011), then the map

T ∗k : x 7→ Tk(x− zk)+ z̄

is a transport map from (µk)zk to νz̄, and therefore

G

∑
k=1

wkW 2
2 ((µk)zk ,λ )<

G

∑
k=1

wk

∫
Rn
|T ∗k (x)− x|2d(µk)zk . (2.4)

We compute
G

∑
k=1

wk

∫
Rn
|T ∗k (x)− x|2d(µk)zk =

G

∑
k=1

wk

∫
Rn
|Tk(x− zk)− (x− zk)+ z̄− zk|2d(µk)zk

=
G

∑
k=1

wk

∫
Rn
|Tk(x)− x+ z̄− zk|2dµk

=
G

∑
k=1

wk

∫
Rn
|Tk(x)− x|2dµk +

G

∑
k=1

wk|z̄− zk|2 +
G

∑
k=1

wk(z̄− zk) · (E[ν ]−E[µk]).

(2.5)

On the other hand, let S∗k be the optimal transport map from (µk)zk to λ . As translations are
invertible, it is possible to write

S∗k : x 7→ Sk(x− zk)+ z̄

for some transport map Sk from µk to λ−z̄. Then an analogous computation yields
G

∑
k=1

wk

∫
Rn
|S∗k(x)− x|2d(µk)zk

=
G

∑
k=1

wk

∫
Rn
|Sk(x)− x|2dµk +

G

∑
k=1

wk|z̄− zk|2 +
G

∑
k=1

wk(z̄− zk) · (E[ν ]−E[µk]).

(2.6)

It follows then from (2.4), (2.5), and (2.6) that
G

∑
k=1

wkW 2
2 ((µk),λ−z̄)<

G

∑
k=1

wkW 2
2 (µk,ν),

in contradiction to ν being the barycenter.
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ii) Suppose not, then there would be a transport map S∗ from µ to νz such that∫ n

R
|S∗(x)− x|2dµ(x)<

∫ n

R
|T (x)+ z− x|2dµ(x).

As before, we may write S∗(x) = S(x)+ z for some transport map S from µ to ν , and then it holds
that ∫ n

R
|S∗(x)− x|2dµ(x) =

∫ n

R
|S(x)− x|2dµ(x)+ |z|2 + z · (E[ν ]−E[µ])

and analogously∫ n

R
|T (x)+ z− x|2dµ(x) =

∫ n

R
|T (x)− x|2dµ(x)+ |z|2 + z · (E[ν ]−E[µ]).

It follows that∫ n

R
|S(x)− x|2dµ(x)<

∫ n

R
|T (x)− x|2dµ(x),

in contradiction to the the optimality of T .
iii) By ii), we have for any z ∈ Rn and any probability measure ν that

G

∑
k=1

W 2
2 (µk,νz) =

G

∑
k=1

W 2
2 (µk,ν)+ |z|2 +2z ·E[ν ],

where we used E[µk] = 0. Choosing z =−E[ν ], we discover

G

∑
k=1

W 2
2 (µk,ν−E[ν ]) =

G

∑
k=1

W 2
2 (µk,ν)−|E[ν ]|2,

so that any minimizer must indeed have the property E[ν ] = 0. �

We are finally ready to define our continuous fairness algorithm and prove its optimality.

Continuous Fairness Algorithm (CFAθ ). Given µk satisfying Assumption A1 and wk the cor-
responding weights, let ν be the barycentre. Then choose νk to be the displacement interpolation
µθ

k between µk and ν , and Tk to be the optimal transport map between µk and νk (cf. Theorem 2.2).

For θ = 0 and θ = 1, we reobtain the algorithms described above for WYSIWYG and WAE,
respectively. As a generalization, we may also pick different values of θ for different k12. In this
case, we would choose νk as the displacement interpolation µ

θk
k between µk and ν .

The question remains how the algorithm (CFAθ ) performs with regard to our fairness require-
ments (1)–(4). Before we answer these questions, we have to formulate these requirements in a
more precise way.

Consider the fairness criteria in order:

(1) As discussed above, individual fairness will typically be in conflict with group fairness. As
a consequence, it only makes sense to consider individual fairness within groups (see also
Dwork et al. 2012, p. 220). Individual fairness is usually formulated in terms of continuity
or Lipschitz continuity (Dwork et al. 2012; Friedler et al. 2016). In our notation, this
would mean that there exists a Lipschitz constant L > 0 such that

|Tk(x)−Tk(y)| ≤ L|x− y| for all x,y ∈ [0,1] and k = 1, . . . ,G. (2.7)

12 This may be significant in order to handle intersectionality, as explained in the introduction.
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However, this will be impossible to satisfy in general,13 although under certain assump-
tions, like the convexity of the support of the target measure, it can be guaranteed (Theo-
rem 1.27 in Ambrosio and Gigli 2013). Instead, we aim to characterize individual fairness
in a least square sense: To this end, we consider the quantity

G

∑
k=1

wk

∫
Rn

∫
Rn

1
2
|Tk(x)−Tk(y)|2dµk(x)dµk(y). (2.8)

Clearly, it is non-negative, and is zero if and only if Tk takes a constant value µk-almost
everywhere, for all k = 1, . . . ,G. This last observation implies that it is unreasonable to
minimize this quantity, as the minimizing configuration would assign the same fair score
to every individual. Not only would such a classification be completely useless for the
decision maker, but it is also questionable if it would be “fair” in any meaningful sense of
the word. Indeed, being treated similarly as a much less qualified member of one’s group
is hardly any fairer than being treated completely differently than a similarly qualified one.
This indicates that in (2.7), the Lipschitz modulus L should not be minimal, but as close
as possible to one. In our least-square framework, therefore, instead of minimizing (2.8),
we should rather minimize

Eind :=
G

∑
k=1

wk

∫
Rn

∫
Rn

1
2
|(Tk(x)−Tk(y))− (x− y)|2 dµk(x)dµk(y), (2.9)

where we call Eind the individual fairness error.
Note that this definition of individual fairness, in contrast to Dwork et al. (2012) and

other papers in this vein, does not presuppose a similarity metric. This seems justified
for two reasons. First, the establishment of a similarity metric, providing an “objective”
assessment of the candidates with respect to the desired trait (ground truth), has been
recognized as extraordinarily difficult and, in fact, as the main shortcoming Dwork et al.’s
framework in the literature (Zemel et al., 2013; Fish et al., 2016, p. 146; Friedler et al.,
2016, p. 3; Gillen et al., 2018, p. 1 et seq.; Chouldechova and Roth, 2018, p. 4), but also
in Dwork et al. (2012), p. 214 et seq. itself. Indeed, it seems unclear how such a metric
should be established in a way that is simultaneously less prone to bias than the raw score
and scalable to hundreds or thousands of applicants. Quite tellingly, one example of a
similarity metric Dwork et al. (2012), p. 215, give is one based on credit worthiness.
However, credit worthiness scores (e.g., FICO scores) are precisely a type of raw scores
we would work with, too. Therefore, in practice, the difference between raw scores and a
similarity metric disappears given real-world limitations on the establishment of the latter
(see also Joseph et al., 2016).

Second, if one had access to an objective similarity metric, the whole scoring procedure
would be quite superfluous as one could use this metric directly to make selection deci-
sions. Hence, we adopt a realist perspective in positing that access to such a metric will
generally be impossible, and that we will have to content ourselves, for purely pragmatic
reasons, with the raw scores arising from the (machine learning) regression procedure.
This seems sensible as long as these raw scores are somewhat close to ground truth, even
though they may be tainted with bias. If, however, the raw scores are so disjunct from re-
ality (e.g., because of bias) that they provide no meaningful information to guide selection
procedures, then rather than salvaging the model through algorithmic fairness, one should

13 The main obstruction to continuity of transport maps is the possible non-connectedness of the support of the
target measure (cf. Theorem 1.27 in Ambrosio and Gigli 2013). This is the case if, within one group, there are further
subgroups with very different score statistics.
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discard it altogether. In sum, our mapping exercise takes the raw scores as a realistically
accessible baseline and therefore dispenses of the need for a similarity metric. Notwith-
standing, our model can obviously be paired with fairness procedures seeking to ensure
the establishment of rather objective raw scores (see, e.g., Zemel et al., 2013). Note, how-
ever, that even “objective”, “factually correct” raw scores may lead to discrimination (in
the sense of violation of group fairness) if the desired trait is unevenly distributed across
protected groups, and that this may still necessitate fairness interventions of the kind we
envisage (cf. Gilles et al., 2018, p. 1).

(2) The requirement of statistical parity imposes that the fair representations conceal any in-
formation on group membership. This means that the events “an individual belongs to
group k” and “an individual has score s” should be stochastically independent. More pre-
cisely, we demand for each k ∈ 1, . . . ,G and every measurable B⊂ Rn

wkνk(B) = wk

G

∑
l=1

wlνl(B). (2.10)

Let now v1, . . . ,vG be any other set of positive numbers with ∑
G
k=1 vk = 1. Then multiply-

ing (2.10) with vk and summing over k yields

G

∑
k=1

(vk−wk)νk = 0.

For any measurable B⊂Rn, consider the vector ν̄ := (ν1(B), . . . ,νG(B)). Since the choice
of the vk was arbitrary, the vector (v1−w1, . . . ,vG−wG) can run through a relatively open
subset of the linear subspace {x : ∑

G
k=1 xk = 0}⊂RG, and hence ν̄ is orthogonal to this sub-

space. But the orthogonal complement of this subspace is the span of the vector (1, . . . ,1),
so we conclude that all components of ν̄ are equal. Since B was chosen arbitrarily, it
follows that all the measures νk, k = 1, . . . ,G, are identical.

(3) Again, the monotonicity requirement can only be fulfilled within groups. As Rn admits
no linear ordering for n≥ 2, we restrict ourselves to the case n = 1. Monotonicity can be
formulated as

Tk(x)≤ Tk(y) whenever x≤ y,

for every k = 1, . . . ,G.
(4) Finally, we assume that the decision maker utility is given as

U =−1
2

G

∑
k=1

wk

∫
Rn
|Tk(x)− x|2dx,

where the negative sign reflects that the utility is higher if the squared difference of the
raw score and the fair score is smaller. Note that decision maker utility is maximized when
Tk = id, i.e. when the raw score and the fair score are identical.

Recall the situation θ = 1, which reflects the WAE worldview. Then all raw distributions are
mapped to the same fair distribution ν . We have argued in (2) above that this is necessary (and
sufficient) for perfect group fairness in the sense of statistical partity. We have the following
optimality result:

Theorem 2.6. Let θ = 1. Among all possible choices of the target map ν and of transport
maps Tk from µk to ν , the ones specified in CFAθ maximize decision maker utility, minimize the
individual fairness functional (2.9), and, in the case n = 1, ensure monotonicity within groups.
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Proof. By definition, the barycenter ν of the µk with weights wk minimizes the functional

ν 7→
G

∑
k=1

wkW 2
2 (µk,ν)

among all probability measures on Rn (cf. Theorem 2.4). On the other hand, by (2.2) and (2.3),
this functional is equal to the negative utility

G

∑
k=1

wk

∫
Rn
|Tk(x)− x|2dµk(x)

if and only if Tk is the unique optimal transportation map from µk to ν . This already establishes
maximal utility for our choice of ν , Tk. Note also that this choice is the unique one with this
property.

By Brenier’s Theorem 2.2, the optimal transport maps Tk are cyclically monotone, which im-
plies monotonicity in the one-dimensional setting. So it remains to show that (2.9) is also mini-
mized by our choices of ν , Tk. Notice first that Eind is invariant under translations of the measures
µk and ν . Thus, given {µk} and {wk} for k = 1, . . . ,G, the minimal value of Eind is attained re-
placing µk by µ̄k, where µ̄k is the translated version of µk with zero expectation, and minimizing
only with among measures ν̄ with zero expectation.

Denoting by E the expectation of a measure, we then compute for the individual fairness error
of µ̄k, wk, ν̄ , and T̄k any transport maps from µ̄k to ν̄ :

Eind =
G

∑
k=1

wk

∫
Rn

∫
Rn

1
2
|(T̄k(x)− T̄k(y))− (x− y)|2 dµ̄k(x)dµ̄k(y)

=
G

∑
k=1

wk

[∫
Rn
|T̄k(x)− x|2dµk(x)−

∫
Rn

∫
Rn
(T̄k(x)− x) · (T̄k(y)− y)dµ̄k(x)dµ̄k(y)

]
=−2U−

G

∑
k=1

wk|E[ν̄ ]−E[µ̄k]|2 =−2U.

But we have already seen that the negative utility is minimized by choosing ν̄ as the barycenter of
the µ̄k with weights wk, and T̄k the optimal transport maps from µ̄k to ν̄ . This choice is consistent
with our requirement that E[ν̄ ] = 0, since the barycenter of measures with expectation zero has
itself expectation zero by virtue of Lemma 2.5iii).

Translating back again and recalling the invariance of Eind under such translations, we see
that the translated measure ν := ν̄z̄, where z̄ := ∑

G
k=1 wk E[µk], and the translated transport maps

Tk := T̄k +E[µk] minimizes Eind for our original measures µk among all possible choices of ν and
Tk. The statement of the Theorem then follows by observing that ν thus chosen is precisely the
barycenter of the µk with weights wk by Lemma 2.5i), and the Tk are the optimal transport maps
from µk to ν by Lemma 2.5ii).

�

3. EXAMPLES

In this section, we consider three examples that highlight different features of our fairness
framework: college admissions; credit decisions; and insurance contracts.

3.1. College Admissions. We start by looking at university/college admissions decisions, a com-
mon example in the literature on algorithmic fairness (see Friedler et al. 2016). As noted, our
framework performs particularly well when groups are large; hence, it is less suitable for small
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FIGURE 1. Distribution of raw scores for two groups
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colleges, but of relevance, for example, in centralized national or other large admissions proce-
dures. As explained in greater detail in the model, our approach consists in transforming a raw
score that individuals receive into a fair score that fulfills certain fairness requirements while si-
multaneously optimizing the utility of the decision maker under the fairness constraints. The raw
score that applicants receive will, in the case of colleges admissions, be some score that aims to
predict college performance based on a number of input data, such as admissions tests; high school
GPA; previous job or educational experience etc. If we care about group fairness, we will be inter-
ested in how the individual raw scores are distributed in different groups, and to what extent our
Continuous Fairness Algorithm CFAθ will remedy inequality between these distributions.

For the sake of analytical clarity, let us consider a drastically simplified example. We assume
that there are only two applicant groups of interest (for example, two different ethnic or gender
groups), each consisting of an equal, large number of members. The college will admit the top-
ranked 50 percent of applicants. Individuals receive raw scores that run continuously from 0
(worst) to 1 (best). Raw scores in Group A are distributed according to a compactly supported
probability density function on the interval from 0 to 0.5 (e.g. a normal distribution centered at
0.25, with tails cut off at 0 and 0.5); similarly, raw scores in Group B are distributed according to
a density function of the same shape from 0.5 to 1, see Figure 1. Thus, even the worst member of
Group B scores better than the best member of Group A. In this extreme case, if the college was
to base its admissions decision on the raw scores, it would accept all members of Group B and
no members of Group A. While maintaining individual fairness within groups and also between
members of different groups, this outcome violates group fairness to an extreme extent.

To apply our fairness framework, we first have to find the intermediate distribution that consti-
tutes the barycenter. This is the distribution that minimizes the sum of the squares of the distances
to both raw group distributions (in the Wasserstein metric). In our case, it is easy to see that it is
the distribution of the same shape as the raw distributions which runs from 0.25 to 0.75 and which
peaks at a score of 0.50. Note, however, that the characterization of the barycenter will not be as
easy in more general circumstances, when the two (or more) distributions are no longer merely
translates of each other.

By choosing θ , we can now vary to what extent we would like to transport the raw distributions
of each group toward this intermediate distribution. If we choose θ = 1, our CFAθ maps the raw
distributions of both groups completely onto the intermediate distribution (cf. Figure 2). If we
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FIGURE 2. The barycenter distribution
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present this novel distribution to the college, and the college applies its decision rule of accepting
the top-ranking 50 percent, it will accept all those with fair scores of 0.5 or more.14 In this case,
group fairness is fully safeguarded as it is impossible to deduce group membership from the fair
score: the fair distribution is exactly the same for both groups. This is equivalent with the ob-
servation that an equal percentage of applicants is expected from each group (statistical parity).
It can be understood as a reconstruction of the equal distribution of scores among groups in the
construct space (WAE) as defined by Friedler et al. (2016). Within groups, our use of an optimal
transport map from the raw to the fair distribution guarantees monotonicity: all those that received
a higher raw score than other group members receive a higher, or equal, fair score. Furthermore,
the optimality constraint on the transport ensures that decision maker utility is maximized: ev-
eryone gets a fair score that is as close as possible, in the least square sense, to their raw score.
However, monotonicity is violated between groups: members of the lower-ranking half of Group
B each had a higher raw score than the members of the upper-ranking half of Group A, but the
ranking is inverted for the fair scores. By implication, individual fairness between members of
different groups is violated; for example, the top-ranking member of Group A had a similar raw
score to the lowest-ranking member of Group B. However, they are now at opposite ends of the
spectrum of fair scores. This is exactly the price one has to pay for group fairness, and the reason
why affirmative action continues to be so contentious (see also the discussion in the subsection on
legal and policy implications).

This does not exhaust the possibilities our algorithm offers, however. Rather, it admits for any
degree of approximation between the raw scores, ranging from zero approximation (θ = 0: fair
scores = raw scores) to the full approximation just discussed (θ = 1: fair scores of both groups
distributed along the barycenter). For example, if θ = 1/2, each of the distributions is transported
“halfway” toward the barycentre distribution, as shown in Figure 3.

As noted in the introduction, θ can also be chosen so that the “80 percent rule” is fulfilled.
This would mean that the probability of a member of Group A of being admitted is at least 80
percent of the respective probability of a member of Group B. Such a result can also be achieved
by imposing strict quotas. Choosing a θ value instead of a certain quota, however, affords the
advantage that it only imposes a certain degree of approximation of the raw distributions; it does
not impose a fixed number of applicants admitted from either group. This is not only an advantage

14 If the group size is odd, the college will have to randomize its admission decision for the lowest ranking pair of
individuals at or above score 0.5. Of course this issue is not visible in our continuum framework.
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FIGURE 3. Fair representations for θ = 1
2
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from a legal perspective, see Section 5. It also implies that if in one year Group B has particularly
strong candidates (but still worse than A), they are not penalized. In every case, the college must
base its admissions decision on the fair distribution that results from the choice of a specific θ . As
Section 5 will highlight in greater detail, it is thus crucial to choose θ wisely.

We note in passing that the preceding discussion easily carries over to private companies or
public agencies making hiring decisions; this is another potentially highly relevant field for algo-
rithmic fairness since cases of algorithmic bias have already been documented in this realm, see,
e.g. Lowry and Macpherson (1988); Reuters (2018).

3.2. Credit Applications. Our second major example concerns a decision maker such as a bank
that decides on applications for credit. As noted in the introduction, this is an area where algo-
rithmic decision making has already become firmly rooted, with algorithmically determined credit
rating scores such as the FICO score in the US and the SCHUFA score in Germany being in wide
use. A number of Fintech startups are basing their loan decisions entirely on algorithmic mod-
els (Hurley and Adebayo 2016).15 Scholars, however, have criticized the credit rating system as
opaque and biased (see Pasquale 2015; Rothmann et al. 2014; Hurley and Adebayo 2016). Let
us therefore consider an example in which individual credit applicants are assigned a credit rating
raw score based on a number of factors such as their financial history, available collateral etc. The
decision rule for the institution consists in establishing a cut-off threshold at a certain score below
which loan applications will be rejected. Above this score, applicants receive loan offers. The
better their scores, the better the loan conditions they are offered.

Again, the CFAθ forces the institution to base its decision on a modified, fair score instead of the
raw score. Just like in the previous example, the choice of a concrete θ is paramount to determine
to what extent different distributions in the various applicant groups should be approximated to the
barycenter distribution. Importantly, let us assume that we have two relevant, binary categories (for
example, ethnicity: black and white; gender: male and female) that create four different groups.
If, for example, there is evidence of particular raw score bias against blacks and against male
applicants separately, but moreover of even greater bias against black male applicants,16 we can

15 See, e.g., https://www.kreditech.com/.
16 This pattern is basically found, for example, in the empirical study by Ayres and Siegelman (1995), p. 309 et

seq., for offers made by car dealers to members of the respective groups. In other settings, of course, women may be
the group discriminated against.
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choose a higher θ for the transformation of the scores belonging to the latter group. This pushes
these particularly biased raw scores closer to the intermediate distribution than the less biased
raw scores of the black and white female, and white male, applicants. Hence, our framework
accommodates different degrees of bias arising from intersectionality.

3.3. Insurance Contracts. A final example stems from insurance contracts. Among standard
consumer contracts, insurance contracts are probably the ones that are based on the most refined
statistical models. If they were not, insurance companies would be out of business fairly soon.
Increasingly, insurance companies are offering personalized insurance contracts whose conditions,
including premiums, are determined by a complex set of factors (see, e.g., Guan 2016). Risk
scores are calculated for a large number of individuals (see Chen et al. 2017, p. 201) so that our
framework generally applies. Let us therefore imagine that an insurance company seeks to distill
a risk score from the input data. In the case of car insurance, this may include accident history;
driving style data; car model; age group etc.

Again, there may be significant differences in the distribution of the raw risk scores among rel-
evant groups. What makes the case of insurance so special, at least in the EU, is the fact that the
Court of Justice of the European Union, in its landmark Test-Achats decision in 2011, ruled that
gender may not be a determining factor in insurance pricing.17 While we cannot offer a compre-
hensive analysis of the legal implications of this judgment (see Hacker 2018, particularly p. 1166
et seq. for more detail), it is clear that, for example in the case of car insurance, insurers may com-
ply with the ruling by not offering women cheaper premiums than men despite statistical evidence
that the former are safer drivers (see Reed et al. 2016, p. 3). Therefore, insurance companies
should have an intrinsic interest in transforming raw risk scores such that gender differences are
mitigated or erased from the data. Our algorithm provides for a straightforward way of achiev-
ing this: we only have to take the distributions for the male and the female group, respectively;
calculate the barycenter; and fully transport the scores onto that distribution by setting θ = 1. De-
pending on how much leeway the law leaves to insurance companies,18 they (or an impartial agent)
may merely approximate male and female score distributions to one another, instead of making
them identical. Here again, it may be of interest to fulfill the “80 percent rule”.

4. RELATION TO OTHER WORK

The field of algorithmic fairness proliferates and is generating a staggering number of defini-
tions of algorithmic fairness. One branch of the field is concerned with detecting discrimination
in algorithmic decision making (see Žliobaitė 2017). The second branch, which concerns us here,
seeks to reduce discrimination by aligning decision processes with formal definitions of fairness.
Without laying claim to completeness, we see definitions as falling into four different categories
that can be roughly attributed to different stages in the algorithmic process. First, there are data
reconfiguration approaches (also called “data massaging”, in Zemel et al. 2013) that seek to trans-
form input data into a fairer representation (pre-processing approaches); examples are Zemel et
al. (2013) and Calmon et al. (2017). A second set of approaches seeks to control the algorithmic

17 CJEU case C-236/09 Test-Achat ECLI:EU:C:2011:100, para. 28–34; on this, see Tobler (2011).
18 See, e.g., the guidelines by the European Commission stating that ”[t]he use of risk factors which might be corre-

lated with gender [...] remains possible, as long as they are true risk factors in their own right” (European Commission,
Guidelines on the application of Council Directive 2004/113/EC to insurance, in the light of the judgment of the Court
of Justice of the European Union in Case C-236/09 (Test-Achats), OJ 2012 C 11/1, para. 17). Thus, the legal admissi-
bility of correlated factors crucially depends on whether these factors can plausibly be related to the risks covered by
the insurance. In machine learning contexts, where specific factors may not always be reconstructable from the output
(particularly in deep neural networks), insurers can “play it safe” by approximating male and female scores.
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process from the input to the output (in-processing approaches). One subset of this group estab-
lishes constraints via a distance metric, generally to ensure individual fairness. Here, examples are
Dwork et al. (2012) and Friedler et al. (2016). The distance metric, in their approaches, measures
distances between individuals or groups in the observed space. Then, a constraint is introduced to
ensure that the output, in what Friedler et al. (2016) call the decision space, does not significantly
increase distances between groups or individuals. Another subset similarly seeks to restrain the
mapping from input to output data, but by positing equal output probabilities at the group level,
such as statistical parity. Examples include again Dwork et al. (2012) and Friedler et al. (2016)
with their group fairness definition, but also Chouldechova (2017), Kleinberg et al. (2016), Berk
et al. (2018) and Datta et al. (2015) (calibration, statistical parity). Third, another type of data
reconfiguration approach transforms the output data (post-processing approaches), in our case a
raw score delivered by an algorithm, or some other decision procedure. Fourth, a final approach
is based on external performance measures, i.e., metrics that analyze in how far the predictions fit
real outcomes (reality check approaches); examples include Chouldechova (2017), Kleinberg et
al. (2016) and Berk et al. (2018) with measures such as predictive parity, conditional use accuracy
equality and error rate balance, as well as Hardt et al. (2017) with equalized odds.

As should have become clear during the discussion of our model, our model uses a post-
processing approach. We note that we could apply our transformation to the raw scores calculated
in the training phase of a machine learning model; in this way, it could extend from the post- to the
pre-processing phase. As a post-processing method, our approach is related to the ones employed
by Zemel et al. (2013), Dwork et al. (2012) and Friedler et al. (2016). However, as opposed to
Dwork et al. (2012) and Friedler et al. (2016), we do not operate with a general distance metric,
and do not include a general Lipschitz condition to guarantee that distances stay approximately
the same in Wasserstein space (however, we can guarantee Lipschitz continuity under some con-
straints, see (2.7)); rather, we measure individual fairness in a least square sense, and aim to ensure
fairness by monotonicity, which in turn is achieved through optimal transport. Our raw score can,
as discussed above, be understood as a functional equivalent of the distance metric in Dwork et al.
(2012, p. 215, 224), with the difference that we generally (although not necessarily) envision the
raw score already as the result of an algorithmic process. At the group level, for θ = 1, our model
enforces group fairness, understood as statistical parity, and can be understood as a reconstruction
of the equal distribution of scores among groups in the construct space as defined by Friedler et
al. (2016). We provide a specific measure for this equal distribution, however, by the construct
of the barycenter. Furthermore, by varying θ via displacement interpolation, we are able to con-
tinuously navigate between the extreme worldviews (WAE, WYSIWYG) presented in Friedler et
al. (2016), and between individual and group fairness. In this, the results of our transformation
bear resemblance to Calmon et al. (2017), who, in a pre-processing and discrete setting, seek to
achieve group fairness while accounting for individual fairness via a distortion constraint. To the
extent that we choose statistical parity as a measure for group fairness, our model is also similar to
Žliobaitė (2015), who introduces an equal acceptance rate. Finally, in so far as we can guarantee
a fulfillment of the “80 percent rule”, our approach is akin to Feldman et al. (2015) and Zafar et
al. (2017).

Another paper that introduces a post-processing constraint that allows for varying degrees of
group fairness is Zehlike et al. (2017). It does not, however, operate with the notion of the
barycenter. Rather, they use a cumulative distribution function to guarantee (subject to a signifi-
cance parameter) that a ranking includes at least a certain proportion of members from a protected
group in its top ranks. One advantage of that measure is that it enforces only a minimum con-
straint: it leaves the ranking intact if (in the raw ranking) more members of the protected group
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are included than specified in the proportion constraint. This could be relevant particularly if the
disadvantaged group has one low-scoring subgroup, but also one high-scoring subgroup that per-
forms better than the advantaged group. Our framework achieves a similar result if we define a
θ value for a selection process without fixing strict admissions quota; if the disadvantaged group
scores particularly high in one year, they would end up closer to the advantaged group, and hence
receive higher selection rates. In the alternative, we may split the disadvantaged group into a high-
and a low-scoring one, and apply a low θ to the higher scoring one. This would preserve the high
scores of this subgroup, while one may transport the low scores of the other subgroup towards the
barycenter by means of a higher θ .

Furthermore, some papers have now started to apply optimal transport to algorithmic fairness.
Optimal transport has the significant advantage that it allows to manipulate not only partial aspects
of the score statistics (like the mean), but the full statistics. It is thus a very natural tool to produce
statistical parity. There is a considerable body of literature on fair learning of regression models,
such as Calders et al. (2013), Fukuchi et al. (2015), or Pérez-Suay et al. (2017); regression, how-
ever, is a somewhat rigid method, as a specific (e.g. linear) ansatz for the predictor is postulated
a priori. As a consequence, usually only the first moments, i.e. the mean values, of distributions
of different groups can be matched, which is a much weaker notion than full statistical parity. See
however Kamishima et al. (2018) for a matching of the first two moments for a particular model
for rating prediction. Optimal transport, on the other hand, allows for genuinely nonlinear trans-
formations of a much more flexible kind and thereby is able to ensure statistical parity. Moreover,
it does so in a provably optimal way, as demonstrated by Theorem 2.6.

Del Barrio et al. (2019), which cites our original working paper, similarly formalizes the trade-
off between information loss and group fairness. However, they work in the context of classifi-
cation, restrict their algorithm to two groups, and use a random repair algorithm which is distinct
from our linear displacement. Similarly, Johndrow and Lum (2019) propose a repair algorithm
using optimal transport theory. However, like Feldman et al. (2015), they consider only the unidi-
mensional case, while we generalize to a higher-dimensional setting.

Finally, none of the mentioned technical papers discusses the legal and policy implications of
their model to any substantial extent, an issue we address in the following section.

5. LEGAL AND POLICY IMPLICATIONS

Because of the proliferation of fairness definitions (see above, Section 4), regulators seeking
to implement fairness constraints face a serious selection problem. Against this background, our
model offers a convenient and flexible framework to switch between different goals within one
single model. In this sections, we briefly discuss three legal and policy implications: the rele-
vance of a continuous scaling for the law; the choice of the substantive value of θ ; and possible
procedures to implement it.

5.1. The Relevance of θ for the Law. There are two ways in which the possibility to gradually
tune the degree of fairness via CFAθ would benefit regulators, but also companies or other or-
ganizations in complying with anti-discrimination law. First, most cases of anti-discrimination
law turn on group fairness. Often, when unequal treatment results from the algorithm picking up
differences between groups encoded in the training data set, the violation of group fairness can
lead to what is called indirect discrimination under EU law and disparate impact under US law
(the following discussion holds for both; see Barocas and Selbst 2016, p. 701 for US law; Hacker
2018, pp. 1152 et seq. for EU law). As mentioned, while there is no fixed quantitative thresh-
old, legal scholars assume that indirect discrimination is found if the selection procedure deviates
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from statistical parity so that a member of the disfavored group has a less than 80% (US) or 75%
(EU) chance, vis-à-vis a member of the favored group, of being positively selected (EEOC 2015,
Section 4 D.; Barocas and Selbst 2016, p. 701; Hacker 2018, p. 1153). Already at this stage, it
is therefore important for companies to be able to gradually tune the degree of group fairness.
As there is no bright line quantitative test, the closer they approximate statistical parity, the more
likely they are to escape the verdict of indirect discrimination in the first place.

More importantly, however, even if indirect discrimination is found, it is not illegal per se.19

Rather, it can be justified through a proportionality test: the legitimate interests of the organization
using the specific selection procedure (e.g., predictive accuracy with respect to the predicted trait)
must outweigh the interests of the disfavored individuals or groups (Tobler 2005, pp. 241 et seq.).
In this balancing exercise, the degree of differential treatment, i.e., the degree of the violation
of group fairness, is an important parameter: for example, discriminatory practices may not go
beyond what is absolutely necessary to reach the legitimate, competing goals of the decision maker
(Tobler 2005, p. 242; Sullivan 2005, p. 963 et seq.). Clearly, therefore, the more the procedure
discriminates against a certain group, the more difficult it is to justify (Hacker 2018, p. 1164).
This shows that, while in the end a selection procedure will be either legal or illegal with respect
to anti-discrimination law, the inner workings of this body of law go beyond this binary choice
and crucially depend on the degree of discrimination (Selbst 2017, p. 165 et seq.), in other words:
the degree of fairness. The algorithm proposed here therefore allows organizations to trade off
(i) the degree to which they want to correct a machine-learned result with (ii) the risk of being
found liable for violating anti-discrimination law, while simultaneously maximizing the utility of
the decision maker at every point of that trade-off.

Second, however, the law also imposes constraints on correcting the results of selection proce-
dures. If re-ranking is achieved by taking protected characteristics into account, the legal limits
of positive action under EU law, or affirmative action in US law, need to be heeded, as discussed
below. The basis for the societal debate around affirmative action, and for the important body
of jurisprudence on it, is precisely the fact that every re-ranking in favor of the members of
one protected group, while enhancing group fairness, may simultaneously reverse-discriminate
against members of the other group, encroaching on individual fairness between different appli-
cants (Moses 2016; Robinson 2016). If re-ranking is based, e.g., on ethnicity, otherwise similarly
situated individuals will be treated differently. In this case, norms of individual equality (equal
protection clauses) conflict with provisions of group equality (anti-discrimination law). This is
precisely why affirmative action is so contested, and why litigation over it continues. In affirma-
tive action, a complex body of case law has developed both under US (overview in Robinson 2016;
Poueymirou 2017; Nainbandian 2000) and EU law (Craig and de Búrca 2011, p. 909 et seqq.).
Importantly, both the US Supreme Court and the CJEU stress that re-ranking remains possible
during the “test-design stage” of a selection procedure, i.e., before selection results have been al-
located to the respective candidates (Bent 2019, p. 35 et seqq.; Kroll et al. 2017, p. 695; Barocas
and Selbst 2016, p. 725; Hacker, 2018, p. 1181).

This leaves ample room for fairness strategies during the development of the machine learning
model. As mentioned, our model can be fruitfully applied at the test-design stage (by applying
it to the scores of the training data set). However, if the discriminatory effect of the selection
algorithm is only discovered once the candidates have already been screened, and raw scores have

19 This becomes apparent in the very definition of indirect discrimination, for example in Art. 2(b) of Directive
2004/113/EC on sex [i.e., gender] discrimination: ”where an apparently neutral [...] practice would put persons of one
sex at a particular disadvantage compared with persons of the other sex, unless that [...] practice is objectively justified
by a legitimate aim and the means of achieving that aim are appropriate and necessary.”
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been assigned to all of them (the selection stage), options for correction are arguably more lim-
ited under the law (Waddington and Bell 2001, p. 600). In this case, a delicate balance needs to
be struck between individual and group equality, in other words: individual and group fairness
(see the discussion in Kroll et al. 2018, pp. 694 et seq.; Kim 2017, pp. 199 et seqq.; Hacker 2018,
pp. 1180 et seq.). The choice between them therefore reproduces not only the dilemmas of affirma-
tive action, but also the controversies between meritocratic and outcome-egalitarian conceptions
of social justice. For EU law, the CJEU has ruled that at the selection stage, an automatic and un-
conditional preference of one candidate over another because of protected criteria is incompatible
anti-discrimination law.20 Rather, it is necessary to take the concrete circumstances of the case,
and the qualifications of the candidates, into account when making re-ranking decisions.21 Hence,
some degree of human oversight of the re-ranking is necessary – the results of the fair algorithm
need to be checked by a mechanism ensuring that re-ranking based on protected criteria is not
automatic. Similar constraints of holistic review are in place under US law (Robinson 2016, pp.
192-194; cf. also Malamud, 2015 p. 14). Hence, fixed minority quota at the selection stage would
fail under both EU and US law.22

As mentioned, the algorithm proposed here does not enforce strict quotas, even under a fixed θ

value. Rather, it precisely facilitates the legally required trade-off and fine-tuning to the concrete
case. It does not uniformly enforce one set of quotas or, more generally, one specific re-ranking
outcome; instead, θ can be chosen consciously with respect to the concrete selection decision.
Moreover, the algorithm’s transformation takes the candidates’ observable qualifications as em-
bodied in the raw score as a basis, thus arguably fulfilling the CJEU criteria just mentioned, par-
ticularly when paired with human-level overview of the re-ranking process (see also Craig and de
Búrca 2011, p. 915; Hacker 2018, p. 1181). From a legal point of view, it will be necessary but
also sufficient for the final decision (credit allocation; admission) to be made by a human decision
maker who has some leeway to overrule the results of the scoring process.23 This, in turn, helps to
ensure compliance with data protection law, too (cf. Art. 22(1) of the EU General Data Protection
Regulation).

In principle, the more we slide θ towards group fairness, the less we can guarantee individual
fairness between members of different groups, and vice versa. If courts or regulators give an
indication concerning the exact trade-off between these two goals, it can be implemented with our
algorithm. To prevent litigation, companies could, pre-emptively, set the parameter so that they
minimize the risk of running afoul of affirmative action rules. Ultimately, however, it is important
to note that automated technological fixes alone, such as algorithmic re-ranking, will not resolve
the conflict between individual and group equality; rather, algorithmic fairness procedures, at least
post-processing approaches, must be paired with a human review of re-ranking decisions to pass
muster before affirmative action law.

5.2. The Choice of θ . Within this legal framework, the choice of the substantive value of θ is
obviously crucial for our model. Ideally, the debate about what θ to choose for different situations
of algorithmic decision making ought to be governed by a broad democratic discourse. Despite
the formality of the model, its core features, we believe, can be discussed outside of a technocratic
framework and may even become the subject of discussion in legislative bodies. As a contribution
to this discourse, we would like to offer the following suggestions for the choice of an adequate θ .

20 CJEU, case C-450/93, Kalanke, EU:C:1995:322, para 22.
21 CJEU, case C-409/95, Marschall, EU:C:1997:533, para 33.
22 CJEU, case C-450/93, Kalanke, EU:C:1995:322, para 22; US Supreme Court, Fisher II, 136 S. Ct., p. 2210.
23 Cf. CJEU, Case C-158/97, Badeck, EU:C:2000:163, paras. 55 and 63 (concerning selection for training and

interview).
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First, the more we can be sure that the raw scores, and the raw distributions, capture ground
truth and are free from bias and other exogenous distortions, the less there is a need to transform
the raw data into a fair representation; θ may then assume a relatively smaller value than in cases
in which we suspect significant bias. Conversely, if we have reason to believe that the training data
are ridden with bias, and if ground truth is not available, a high θ score seems attractive (see also
Zafar et al. 2017, p. 2).

Second, since the choice of θ governs the trade-off between more group fairness (high θ ) and
more individual fairness (low θ ), as discussed in the introduction and the model, we suppose
that different θ values will be appropriate for different situations. In fact, it is the beauty of
the model that it allows us to adapt to different areas of algorithmic decision making depending
on whether we want to strengthen group or individual fairness. As a tentative suggestion, we
could say in branches that deal with decisions that decisively shape the socioeconomic prospects
and capabilities of applicants for years, selection procedures must be closer to statistical parity
to avoid indirect discrimination. Hence, group fairness, i.e., statistical parity, could be a greater
concern in areas that a) primarily form the basis of future life opportunities (e.g., high school or
college admissions; high-value credits); or that b) directly relate to basic needs (such as access
to housing; to justice; or to health insurance). Conversely, in branches with less implications
for the long-term socioeconomic position of applicants, individual fairness could be a greater
motivation. This may concern areas where, primarily, past performance or events are evaluated
(e.g., job applications, perhaps also access to smaller lines of credit). Hence, regulators or courts
could refer to our algorithm in establishing different quantitative discrimination thresholds (or
corridors) for different sectors of the economy.

Clad in academic metaphors, group fairness could be more important in situations similar to
the granting of scholarships (enabling future flourishing), and individual fairness for awards (rec-
ognizing past achievements). Evidently, many areas will combine elements of both patterns; this
is precisely where the advantage of our model lies that allows for intermediate degrees combining
individual and group fairness.

We would also like to stress that some areas may necessitate yet other fairness metrics. For
example, in criminal justice sentencing decisions, the different costs of false positives and false
negative decisions for the concerned individuals suggests a focus on error rate balance, (see, for
the controversy surrounding the COMPAS algorithm, Chouldechova 2017; Kleinberg et al. 2016;
Berk et al. 2018). The error rate balance is a statistical measure at the group level, but is not
equivalent to statistical parity. One important future extension of our model, therefore, will be to
include this measure as well.

5.3. Designing Procedures to Implement CFAθ . On the procedural side, models of algorith-
mic fairness call for new types of regulatory implementations (Veale and Binns 2017; Hacker
2017). We are aware that this raises several challenges for real-world implementation. To illus-
trate them, let us briefly return to the example of credit scoring. Our model necessitates three
separate procedural steps: first, the computation of the raw score predicting credit worthiness;
second, its transformation into a fair score; and, third, the application of the decision rule to this
fair representation.

We take the first step, the calculation of the raw scores, as a given. This is precisely where ma-
chine learning models enter the scene. However, we do want to note that, already at this step, bias
minimization techniques could apply (see, e.g., Calders and Verwer 2010 and the brief overview in
section “Relation to Other Work”). For the second step, an impartial, trusted party may be needed
to perform the transformation of the raw into the fair representation. Moreover, ideally based on
legislative guidance, this party also needs to determine the value of θ . One key policy question
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will be whether private companies should take on the role of an impartial party, as in financial au-
diting; or whether a government agency should be endowed with this task (see Tutt 2017; Wachter
et al. 2017, p. 98, for a discussion). Both solutions raise questions of conflicts of interest, capture
etc. After the transformation of the scores, the banks needs to know the fair distribution. The
application of the decision rule, by the decision maker, based on the fair rather than the raw data
seems straightforward to us.

In the end, implementing a framework for any fair decision making model in the algorithmic
context will provide quite a challenge in the real world. With our model, we hope to facilitate
the most relevant trade-offs involved, and to make transparent the different design choices that
policymakers face.

6. EXPERIMENTS

In this final section, we implement CFAθ and experimentally evaluate its performance on two
data sets. First, we use synthetic data to show that our approach can be used to gradually reduce
disparate impact between different groups by increasing θ . Second, we apply CFAθ to a real-
world data set, the law school data set comprising admissions and performance data of law school
students.

A note on terminology: We do not distinguish between protected and non-protected groups,
only between protected and non-protected features, and between (initially) advantaged and disad-
vantaged groups. In legal terms, equal treatment law generally forbids direct or indirect discrim-
ination against any group singled out by a protected feature (e.g., male or female). In this sense,
all groups defined by protected criteria are protected. Of course, in affirmative action settings, one
group is usually underrepresented, i.e., initially disadvantaged. This does not imply, however, that
members of the advantaged group are non-protected. Rather, the legal issues surrounding affir-
mative action, for example in the doctrine of the Court of Justice of the EU (see Section 5), arise
precisely from the fact that legal protection is granted even to members of advantaged protected
groups under antidiscrimination law.

6.1. Data Sets.

6.1.1. Synthetic Data. Our synthetic data set consists of raw scores for 100,000 individuals. For
each individual, there are two categories of protected features: gender (0, 1) and ethnicity (0, 1, 2),
yielding six groups in total (Group 1: [0,0]; Group 2: [0,1] etc.), of which three are disadvantaged
by their score distributions (Figure 4). Raw scores are (almost) normally distributed integers with
different means and standard deviations for each of the six resulting groups. The individual values
range from 3 to 88 and are distributed at random among the individuals, subject to the normal
distribution constraint. We can imagine these raw scores to be credit scores calculated by a credit
score agency such as FICO in the US or SCHUFA in Germany.

6.1.2. Real-World Data: Law School Admissions. The law school data set was first described
by Wightman (1998). It was used for the study of differential bar exam passage rates between
different ethnic groups, out of a concern that certain metrics or admissions policies disfavor ethnic
minority groups, particularly black students. The data set includes anonymized data on 21,792
students in total and also comprises two categories of protected features: gender (male, female)
and ethnicity (White, American Indian, Asian, Black, Hispanic, Mexican, Other). Women make
up a little less than 44% of all students, White students 84%, American Indians around 0.5%,
Asians less than 4%, Blacks less than 6%, Hispanics around 2%, Mexicans less than 2%, and
others around 1%. Furthermore, for each student, it records three non-protected features: the
LSAT (law school admissions test) score; the undergraduate grade-point average; and the average
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FIGURE 4. Raw scores for synthetic data

FIGURE 5. LSAT scores by ethnicity

grade at the end of the first year of law school (as a z-score: ZFYA). We use the LSAT score as
the raw score for our analysis. LSAT scores range from 11 to 48 in the data set. In an admissions
setting, for example, a ranking model might be trained, using the law school data set as training
data, to predict an equivalent of an LSAT score as the relevant admission score for the selection
of the top k-ranked individuals. Disparities in the LSAT score would translate into disparities in
the admissions policy. Hence, assigning fair LSAT scores remains an important task. Fairness
measures do not differ much between gender groups, however. Therefore, we focus on the largest
ethnic minority, black students, whose LSAT score distribution significantly and negatively differs
from the other groups’ score distributions (see Figure 5).

6.2. Experimental Setting. In the experiments, different parameters can be adjusted. First, the
bin size determining the intervals in which scores are considered by the algorithm can be varied;
for example, if one group consists of relatively few members, the bin size can be expanded so that
a sufficient number of individuals fall into the bin. The default standard bin size for raw scores,
chosen here, is 1.

Second, most importantly, the θ parameter can be set anywhere between 0 and 1 for each
group separately, depending on the desired trade-off between utility/individual fairness on the one
hand and group fairness on the other hand. As explained in the model, a θ value of 0, in theory,
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produces fair scores that are identical to the raw scores, hence implementing a WYSIWYG world-
view. Conversely, in theory, a θ score of 1 maps all raw scores fully onto the corresponding total
barycenter scores. If chosen for all groups, it should therefore fully align distributions between
the groups and implement a WAE worldview. Intermediate θ values between 0 and 1 correspond
to an interpolation between these two extremes.

To achieve the transformation from raw to fair scores, we use the Python Optimal Transport
library of Flamary & Courty 2017. To experimentally measure the performance of CFAθ , we
implement two widely used performance metrics (see, e.g., Qin et al. 2010, at p. 360): precision
at position k (P@k) and normalized discounted cumulative gain (NDCG). P@k describes by how
much the fair ranking diverges from the raw ranking. Therefore, it approximately measures our
individual fairness error (equation 2.9). More specifically, precision at position k evaluates the
top k items of a ranking, based on whether they are relevant or irrelevant for the decision maker.
We define an item (= individual) in the re-ranked fair score ranking as relevant if and only if the
candidate was included in the top k in the raw ranking, otherwise as irrelevant. NDCG, by con-
trast, uses multiple levels of relevance to evaluate the top k-ranked items of a ranking (Järvelin and
Kekäläinen 2002). For NDCG, gains are calculated directly using the individual scores. Depend-
ing on the rank, the gain is discounted logarithmically (1/ log2(n+ 1)), so that gains by lower-
ranked individuals count substantially less. This reflects the fact that they will often be considered
less frequently by the decision maker. All discounted gains are summed up until position k and
then normalized onto the interval [0;1] by a normalization coefficient reflecting an ideal ranking.
In our context, for the purpose of measuring differences between the raw and the fair ranking, the
raw score ranking functions as the ideal ranking. We note that this is a strong assumption and
usually not realistic, as a trained IR model is not 100 % correct with respect to the training data.
We expect NDCG differences to be much smaller if one compares the differences between ground
truth and predictions on the one hand and ground truth and fair score adjustment on the other.
However, in our particular setting, we assume a 100 % correct model to evaluate the maximum
utility loss that our method can introduce to a ranking.

Furthermore, we evaluate fairness gains using an adaptation of a fairness measure which is
widely used in the literature: the disparity measure (see Yang et al. 2018). The disparity measure
is defined as the ratio of two proportions: the proportion of positively selected members of one
protected but disadvantaged group compared to the proportion of that group in the entire data set.
It makes particular sense to use this measure because a disparity measure of less than 0.8 (US) or
0.75 (EU) usually indicates indirect discrimination in antidiscrimination law (EEOC 2015, Section
4 D.). We operationalize this measure for our setting as in Yang et al., 2018, at p. 3. Both the
raw and the fair scores can be used to rank the individuals. The top-k individuals are positively
selected. What we measure directly is the share of positively selected individuals for each group
at every k (Figures 12, 13 and 18). We then calculate at what cut-off point the disparity measure
of the disadvantaged groups reaches 80%.

Due to the differing number of individuals in the two data sets, we ran the evaluations of the
experiments with a step size (for the k values) of 1,000 for the synthetic data and of 100 for the
LSAT data. The findings do not change significantly, however, for other step sizes.

6.3. Results.

6.3.1. Synthetic Data. In our experiment with synthetic data, we perform three distinct fair score
transformations from the raw scores, with θ values of 0, 0.5 and 1 for each group, respectively.
As can be seen in the plots (Figure 5), the raw score distributions of the different groups differ
significantly.
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FIGURE 6. θ = 0

FIGURE 7. θ = 0.5

While θ=0 reproduces this fact, increasing θ gradually has the group distributions converge
toward the barycenter, see Figures 6–8.

The performance evaluation reveals the following (Figures 9–11): for θ=0, while the NDCG
value, as expected, remains very close to 1, the P@k value drops from about rank 1,000 to a min-
imum at 0.751 around rank 2,000. From a strictly mathematical viewpoint, P@k should always
equal 1 as the raw ranking should be fully preserved under θ = 0. While the P@k value subse-
quently recovers and remains above 0.89 after rank 5,000, the drop in the upper part of the ranking
reflects the limitations of our model discussed above: the algorithm has some difficulties in ad-
justing to groups that are either too small or exhibit too little variance within a certain interval.
This implies, for practical purposes, that instead of using fair scores for θ = 0, the raw scores
should be used. The performance is much better for higher θ values. We lose only a maximum of
3.9 % in NDCG performance for θ = 0.5 and of only 10.1 % for θ = 1. The data therefore does
not contradict our mathematical conclusion that the optimality of the transport preserves decision
maker utility to a maximum. P@k varies and drops substantially for both θ = 0.5 and θ = 1,
which reflects the fact that the algorithm does re-rank individuals, testifying to an increase in what
has here been termed individual fairness error. Simultaneously, the fairness evaluation (Figures 12
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FIGURE 8. θ = 1

FIGURE 9. Performance for θ = 0

and 13) shows that already for θ = 0.5, but even more so for θ = 1, many more individuals of
the initially disadvantaged groups are now listed in the higher parts of the ranking. In our data,
we have three disadvantaged groups: Group 3, Group 5 and Group 6 (ranging from least to most
disadvantaged). For θ = 0, they reach a disparity measure of 0.8 at the following ranking posi-
tions: from rank 53,000 on (Group 3); 64,000 (Group 5); and 95,000 (Group 6).24 For θ = 0.5,
the disparity threshold is reached earlier: at rank 46,000 (Group 3); 60,000 (Group 5); and 93,000
(Group 6). For θ = 1, the threshold is further lowered, quite substantially, to rank 5,000 (Group
3); 27,000 (Group 5); and 91,000 (Group 6).

Therefore, the data shows that indeed, as expected, an increase in θ increases the individual fair-
ness error (and hence decreases decision maker utility), but also increases group fairness. Again,

24 We calculate these thresholds as follows: Each group has a share of 16.6 % of the entire population. Hence, to
reach a disparity measure of more than 0.8, the groups need to have a positive selection rate of at least 13.28 %. Group
3 reaches this threshold from rank 53,000 on, with 13.42 %; Group 5 at rank 64,000 with 13.5 %; and Group 6 at rank
95,000 with 13.6 %. For each of the other fairness evaluations, we calculate the thresholds correspondingly.
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FIGURE 10. Performance for θ = 0.5

FIGURE 11. Performance for θ = 1

we need to stress that the results imply that our algorithmic implementation of the model works
well for large groups and data sets in which a large number of individuals are eventually consid-
ered for a decision. It is not suitable for decision making contexts in which only the first 10-100
individuals are accepted. This is due to a loss in precision of the optimal transport procedure as we
move from the continuous mathematical framework to the necessarily approximative algorithmic
implementation.

6.3.2. LSAT. The experiment with the LSAT data set is restricted to the θ values of 0 and 1.
Qualitatively speaking, the results of the experiment with synthetic data are reproduced (Figures
14 and 15): the higher θ value leads to an increased individual fairness error (= decreased decision
maker utility), but to an increase in group fairness. However, three additional features should be
noted. First, while the NDCG scores for both θ values remain very close to one, the P@k values
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FIGURE 12. Fairness evaluation for θ = 0.5

FIGURE 13. Fairness evaluation for θ = 1

FIGURE 14. LSAT data for θ = 0
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FIGURE 15. LSAT data for θ = 1

FIGURE 16. Performance at θ = 0

drop a little more than in the synthetic data set, the minimum under θ = 0 being reached at 0.717
for rank 600. Second, however, NDCG performance is significantly better than with synthetic
data, with a maximum loss, for θ = 1, of 1.2 % at rank 1,500 (Figures 16 and 17).

Third, the fairness evaluation (Figure 18) shows that disadvantaged groups do perform signifi-
cantly better under θ = 1. The most disadvantaged group, black students, crosses the 0.8 disparity
threshold for θ = 0 only at rank 21,300; for θ=1, it is lifted above 0.8 already at rank 100, then
drops again below that measure, to remain above 0.8 again for ranks 400-600, 1,200-6,500, and
then from 7,600 on. Hence, in a typical law school class of 500 students, we would find disparate
impact under θ = 0 (i.e., using the raw scores): the disparity measure is less than 0.2. However,
for θ = 1, the disparity measure is around 1, averting disparate impact vis-à-vis black students.

6.3.3. Running Time and Scalability. The algorithm was implemented on a standard laptop com-
puter. The running time for the re-ranking ranged between a maximum of 12.3 s for θ = 1 for
the synthetic data and a minimum of 6.5 s for θ = 1 for the LSAT data set. As our synthetic data
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FIGURE 17. Performance at θ = 1

FIGURE 18. Fairness evaluation for LSAT, θ = 1

set contained 100,000 individuals, this shows that our algorithm scales well to data sets with large
numbers of individuals.

7. CONCLUSION

This paper presents a new algorithm which harnesses optimal transport theory to maximize
decision maker utility under fairness constraints. The algorithm facilitates the trade-off between
different fairness measures (individual fairness error and group fairness) as well as different fair-
ness worldviews (WYSIWYG and WAE). Since the degree of implementation of group fairness
can be varied, the algorithm helps decision makers adapt their models to varying legal constraints
in different situations. This finding is validated in a number of data-driven experiments. The key
take-away from the experiments is that the method does not perform well if groups are small.
However, when groups are large, it presents a fast, scalable and functional way to address issues
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of discrimination in a variety of decision making contexts, from credit decisions to insurance and
large admissions decisions.
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Järvelin K, Kekäläinen J (2002) Cumulated gain-based evaluation of IR techniques. ACM Transactions on Infor-
mation Systems 20: 422–446
Johndrow J, Lum K (2019) An algorithm for removing sensitive information: application to race-independent
recidivism prediction. The Annals of Applied Statistics 13: 189–220
Joseph M et al. (2016) Fairness in learning: Classic and contextual bandits. Advances in Neural Information Pro-
cessing Systems 29: 325–333
Kamishima T et al. (2018) Recommendation Independence. Proceedings of Machine Learning Research 81:1–15
Kim P (2017) Auditing algorithms for discrimination. University of Pennsylvania Law Review Online 166: 189–
203
Kleinberg J et al. (2016) Inherent trade-offs in the fair determination of risk scores. arXiv:1609.05807
Kleinberg J et al. (2018) Algorithmic Fairness. AEA Papers and Proceedings 108: 22–27
Kroll JA et al. (2017) Accountable Algorithms. U Pa L Rev 165: 633–705
Lowry S, Macpherson G (1988) A Blot on the Profession. British Medical Journal 296: 657–658
Malamud D (2015) The Strange Persistence of Affirmative Action Under Title VII. West Virginia Law Review
118: 1–22
Moses M (2016) Living with Moral Disagreement: The Enduring Controversy about Affirmative Action. Univer-
sity of Chicago Press, Chicago and London
Naibandian J (2010) The US Supreme Court’s “consensus” on affirmative action, in: Broadnax W, Diversity and
Affirmative Action in Public Service. Westview Press, Boulder, pp. 111–125
Pasquale F (2015) The Black Box Society. The Secret Algorithms That Control Money and Information. Harvard
University Press, Cambridge, MA.
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Žliobaitė I (2017) Measuring discrimination in algorithmic decision making. Data Mining and Knowledge Dis-
covery 31: 1060–1089

Meike Zehlike: MAX PLANCK INSTITUTE FOR SOFTWARE SYSTEMS, CAMPUS E1 5, 66123 SAARBRÜCKEN,
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